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Abstract

Evidence increasingly shows that environmental quality shapes human capital at birth

with long-run effects on health and welfare. Do these effects, in turn, affect the eco-

nomic opportunities of future generations? Using newly linked survey and administra-

tive data, providing more than 150 million parent-child links, we show that regulation-

induced improvements in air quality that parents experienced during gestation increase

the likelihood that their children, the second-generation, attend college 40-50 years

later. Greater parental resources and investments, rather than biological channels,

appear to drive this effect. Our findings suggest that within-generation estimates of

marginal damages substantially underestimate the total welfare effects of improving

environmental quality and point to the empirical relevance of environmental quality as

a contributor to economic opportunity in the United States.
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1 Introduction

Growing evidence suggests that gestational exposure to air pollution, and other environmen-

tal factors, plays an important role in shaping endowments at birth, with long-term effects

on health and welfare (Chay and Greenstone, 2003a,b; Almond, 2006; Black et al., 2007;

Currie et al., 2009; Kelly, 2011; Almond et al., 2010; Isen et al., 2017; Black et al., 2018).

A separate literature has considered the importance of parental income and human capital

for the economic opportunities of their children (Becker and Tomes, 1979; Cunha and Heck-

man, 2007; Heckman and Mosso, 2014; Lee and Seshadri, 2019) and documented high levels

of intergenerational persistence (Solon, 1992; Black et al., 2005; Black and Devereux, 2011;

Chetty et al., 2014; Chetty and Hendren, 2018a,b; Chetty et al., 2018). Taken together these

findings raise an important question: Do environmental shocks to endowments at birth have

persistent effects across generations? The answer to this question has important implications

for determining the returns to investments in environmental quality, as well as for under-

standing the contribution that environmental quality plays in shaping economic opportunity

and social mobility.

We provide evidence that prenatal particulate matter exposure has intergenerational

consequences. To identify this effect we exploit the introduction of the 1970 Clean Air Act

Amendments (CAAA), which imposed county-level restrictions on the maximum-allowable

concentrations of total suspended particles (TSP), resulting in substantial improvements in

ambient air quality in hundred of counties across the United States. This variation has

been previously used to explore the effects of air pollution exposure on contemporaneous

outcomes such as infant mortality (Chay and Greenstone, 2003a), home prices (Chay and

Greenstone, 2005), fetal mortality (Sanders and Stoecker, 2015), adult mortality (Chay et

al., 2003), as well as later-life earnings for those that were born at the time of the 1970

CAAA (Isen et al., 2017). For good reason the existing literature focuses on those that

were directly affected by the 1970 CAAA. However, if regulation-induced reductions in pol-

lution exposure have intergenerational consequences then within-generation analyses could
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substantially underestimate the total welfare effects of investments in environmental quality.

We focus on the children of those who directly benefited from the 1970 CAAA. We

compare outcomes for the children of cohorts who were born just before these changes went

into effect to the children of cohorts that were born just after these large changes in air

quality. This isolates the additional effect of parental exposure to clean air in very early

childhood relative to improvements in the air quality of parents born before the introduction

of the 1970 CAAA. The key identification assumption is that all cohorts experienced the

same air pollution later in life. In support of this assumption we estimate that, on average,

there are no differences in later life particulate matter exposure for the first-generation, nor

any differences in prenatal or later-life particulate matter exposure for the second-generation.

We are able to explore the intergenerational consequences of improvements in environ-

mental quality thanks to a new set of parent-child linkages constructed using U.S. Census

Bureau data and administrative records. Our data exploits the exact date and location of

birth for all children born in the 1960s and 1970s and more than 150 million parent-child

links.

Our results suggest that prenatal exposure to particulate matter has a statistically sig-

nificant and economically meaningful impact not only on those directly affected but also

on the economic opportunities of their children. We estimate that children whose parents

experienced lower gestational pollution exposure are much more likely to attend college. A

10µg/m3 reduction in parental gestational TSP exposure is associated with a 3.2-3.9 percent-

age point increase in the likelihood of attending college.1 This is equivalent in magnitude

to the intergenerational effects of 0.2-0.25 Head Start Programs (Barr and Gibbs, 2017).

Back-of-the-envelope calculations suggest that the economic consequences of the estimated

college enrollment effect are meaningful. Assuming a college wage premium of $28,000 p.a.

1The implied estimate from the reduced form effect of the 1970 CAAA, which, on average, induced an
8µg/m3 reduction for the parents of the second-generation sample, is almost identical. An 8 µg/m3 reduction
in parental gestational TSP exposure is associated with a 2.6-3.08 percentage point increase in the likelihood
of attending college. Our reduced form estimates range between a 0.26-3 percentage point effect size. In
proportional terms, a 10 µg/m3 decrease in TSP exposure from the 1971 baseline would be similar to the
cross-sectional difference in particulate matter exposure between blacks and whites in the 2000’s.
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(March CPS), a graduation rate of 50 percent (National Center for Education Statistics),

a 3 percent real discount rate, and a constant earnings effect over the lifecycle, we calcu-

late that a 10µg/m3 reduction in parental gestational TSP exposure amounts to a $1,515

increase in cumulative lifetime earnings in present value terms. Combining the number of

births in nonattainment counties in 1972 (1.52 million), the probability that an individual

had a child (0.63), and the average number of children born to each individual (2.24), we

calculate that the total second generation earning effects associated with TSP reductions for

the 1972 cohort are ≈$3.2 billion. To the extent that the estimated reductions in TSP have

been permanent these benefits continue to accrue for the children of all cohorts born since.

To the degree that the intergenerational effects of pollution exposure have effects on income

other than through college our estimates represent a lower-bound.

In light of these effects we investigate the mechanisms that drive intergenerational trans-

mission. We posit that there are two broad potential channels. The first channel is biologi-

cal. Prenatal pollution exposure could result in epigenetic changes, i.e, permanent changes

in gene expression, that are hereditarily transmitted to the second-generation. The second

mechanism is economic. Prenatal pollution exposure affects the health, human capital, and

earnings of the first generation. In turn, parental resources and investments may affect the

likelihood of college attendance for their children.

First, we explore the empirical relevance of the biological pathway. We do so using

information on the adopted status of children. We find no meaningful differential effect

between adopted and biological children.2 This finding suggests that the college attendance

effects are unlikely to be driven by the heritable transmission of any epigenetic changes

that were realized by the first generation. We note that this does not imply that heritable

transmissions did not occur. There may be latent health effects associated with inherited

epigenetic changes that are not realized at this stage of the life cycle.

Second, we explore whether our estimated effects might be driven by economic forces

2We do not find any effect of prenatal pollution exposure on the likelihood of the first-generation adopting
a child. This suggests that there is not differential selection into adoption by treatment status.
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— parental resources and investments. We estimate that the regulation-induced reductions

in prenatal TSP exposure resulted in a 1.2 percent increase in mean annual earnings for

affected cohorts — a $3,499 increase in cumulative lifetime earnings in present value terms.3

While this effect is non-trivial, the existing literature suggests that the effect size is likely

too small to plausibly explain the entirety of our college-attendance estimate (Lovenheim,

2011; Lovenheim and Lockwood Reynolds, 2013; Bulman et al., 2017). However, the existing

literature explores the effects of an increase in individual wealth much later in life (usually

during the teenage years of the second generation). Our earnings effects are experienced by

the whole community, and because the first-generation were affected at birth, the second-

generation benefit from these effects for their entire life, including the early years where

increased household resources may be particularly important (Bastian and Michelmore 2018,

Bailey et al. 2020). Nevertheless, it is likely that other factors are important as well.

We also explore the degree to which differential selection into our second-generation

sample could drive our effects, a mechanism at the intersection of biology and economics.

Based on existing evidence the cohorts that experienced lower prenatal particulate matter

exposure end up healthier and richer than cohorts that were born prior to the introduction

of the 1970 CAAA. This is not a threat to identification as the fundamental cause for these

differences is still prenatal pollution exposure. However, it is possible that income and

health affect fertility patterns (Becker, 1960; Lovenheim and Mumford, 2013; Black et al.,

2013; Dettling and Kearney, 2014; Kearney and Wilson, 2018; Autor et al., 2019). If richer

individuals choose to have fewer, “higher quality” children, and poorer individuals choose

to have more, “lower quality” children, then this may translate into differences in college

attendance. It is also possible that differences in health and income may affect the timing of

childbirth, through differences in risky behavior. Finally, health and income differences may

affect the likelihood of family formation, affecting the likelihood that the first-generation

have children, or the household environment in which children are born (Clay et al., 2018).

3This estimate is comparable to the estimates provided by Isen et al. (2017) who examine the effects of
the 1970 CAAA on first-generation later life earnings using the LEHD for 24 states.
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We do not estimate any meaningful effects of prenatal pollution exposure on marital status.

While being an outcome of interest in its own right, the absence of an effect on marital status

also suggests the probability that a parent-child link is found — which depends somewhat

on marital status — is unlikely to be correlated with exposure. We also estimate precise null

effects of prenatal pollution exposure on the likelihood that first-generation individuals had

any children, the number of children, or the timing of children. Collectively, these findings

suggest that our second-generation estimates are unlikely to be driven by selection into the

second-generation sample.

Finally, we explore whether parental investments in human capital could plausibly con-

tribute to our results. We do this in two ways. First, we explore existing estimates of the

contribution of cognitive and non-cognitive skills to college attendance. We calculate that

a 10 µg/m3 reduction in particulates would be equivalent to 0.2-0.25 Head Start Programs

(Barr and Gibbs, 2017), a 2 standard deviation increase in self esteem, a 0.93 standard devi-

ation reduction in impulsivity, a 0.73 standard deviation decrease in schooling problems, or

a 0.38 standard deviation increase in cognitive ability (Lundberg, 2017). While each of these

considerations alone is unlikely to drive our college attendance results it seems plausible that

a combination of these considerations could be affected by parental investments as a resid-

ual explanation for our findings. To provide a more concrete sense as to whether parental

investments in cognitive and non-cognitive skills is a plausible mechanism or not, we link the

public use American Time Use Survey (ATUS) to administrative records on place of birth.

This linkage allows us to integrate respondents from the ATUS into our existing data in-

frastructure. We provide evidence that treated parents — i.e., those that experienced better

in-utero air quality — spend more time reading to their children. These findings suggest

that parental investments in cognitive and non-cognitive skills contribute to the estimated

college attendance increases. We caveat that the sample size is substantially smaller in this

analysis.

Overall, our results suggest that the effects on college attendance reflect a combination
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of parental resources and investments. Those directly affected by reduction in prenatal

pollution exposure are richer and healthier. The parental earnings effects do not appear

to be driven by educational attainment and so may reflect a broader health sequelae that

may also have direct effects on the second-generation through increased “parenting human

capital.”

Our findings contribute to several literatures. First, we contribute to the literature doc-

umenting the importance of environmental factors, as opposed to genetic factors, in deter-

mining human capital endowments at birth (Chay and Greenstone, 2003a,b; Almond, 2006;

Black et al., 2007; Currie et al., 2009; Fertig and Watson, 2009; Kelly, 2011; Almond et al.,

2010; Isen et al., 2017; Black et al., 2018). Specifically, we contribute to a nascent litera-

ture documenting that the economic consequences of early childhood and prenatal shocks

persist across generational boundaries (Black et al., 2018; Barr and Gibbs, 2017; East et

al., 2017; Akresh et al., 2018). We build on this literature by providing some insight into

the mechanisms that could underlie the transmission of such shocks. Parental resources and

investments, rather than through biological channels, drive our findings.

Second, we contribute to what is now a large literature on the Clean Air Act. While the

question under study is novel, the quasi-experimental design described is well established.

The 1970 CAAA variation (and similar variation from subsequent amendments) has been

used to study the effects of air pollution on contemporaneous outcomes such as infant mortal-

ity (Chay and Greenstone, 2003a) and fetal mortality (Sanders and Stoecker, 2015), as well

as later-life outcomes such as adult mortality (Chay et al., 2003), and adult earnings (Isen

et al., 2017). We follow the original research design, implemented by (Chay and Greenstone,

2003a) and (Isen et al., 2017), as closely as possible to discipline our analysis. Our re-

sults highlight that environmental regulations can have intergenerational consequences with

important implications for human capital accumulation. Combining the first- and second-

generation earnings effects delivers a total earnings effect of $8.6 billion for the 1972 cohort.

The combined effect on cumulative lifetime earnings account for 76-95% of the monetized
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damages associated with infant mortality, examined in previous work (Chay and Greenstone,

2003a).4 To date the mortality effects of pollution have been the largest monetized damage

in formal benefit-cost evaluations of environmental regulations. Mortality benefits currently

account for 93% of EPA calculated benefits. As such, the absence of long-run and intergen-

erational considerations in benefit-cost analysis suggests that the returns to improvements

in environmental quality may be substantially larger than previously thought. Most notably,

we show that a within-generation approach to estimating the returns to improvements in

environmental quality likely underestimates the total welfare effects.

Third, we contribute to the literature exploring economic mobility and opportunity

(Becker and Tomes, 1979; Solon, 1992; Black et al., 2005, 2007; Black and Devereux, 2011;

Chetty et al., 2014; Chetty and Hendren, 2018a,b; Chetty et al., 2018). Within this litera-

ture the importance of neighborhoods has been established for the economic opportunities

of children (Chetty et al., 2016; Chetty and Hendren, 2018a; Chyn, 2018; Deutscher, 2019).

However, what it is about neighborhoods that matters is less clear. Can greater economic op-

portunity be created within neighborhoods, or should policy focus on encouraging households

to move into neighborhoods with greater economic opportunity? Our results open up new

lines of inquiry, raising questions about the potential role that investments in environmental

quality may play in increasing upward mobility and economic opportunity.

The remainder of the paper is structured as follows. Section 2 presents background

information and a conceptual framework, motivating the research design. Section 3 describes

the data and empirical strategy. Section 4 presents our results. Section 5 discusses the

implications of our results and concludes.

4The range of estimates arises because we bound the value of a statistical life between $8 and $10 million
($2016), following Lee and Taylor (2019)
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2 Background and Conceptual Framework

What are the channels through which prenatal pollution exposure could have intergener-

ational effects on human capital? First, we have to understand how prenatal particulate

matter exposure could directly affect health and development. In our empirical analysis

we exploit variation in prenatal exposure to total suspended particles (TSP), the type of

particulate matter that was regulated by the EPA at the time of the 1970s Clean Air Act

amendments (CAAA). TSPs represent a complex mixture of organic and inorganic com-

pounds found in the air that are smaller than 100 microns in diameter. TSPs enter the

atmosphere due to both human activity, e.g., traffic, construction, and industrial produc-

tion, and natural sources, e.g., dust and pollen.

All particulate matter can damage human health, although larger particles are less harm-

ful than smaller particles. This is because larger particles settle more quickly than smaller

particles and so are less likely to be inhaled. When larger particles are inhaled, they settle in

the nose and throat and are usually expelled by coughing or sneezing. By contrast, smaller

particles (those smaller than 10 microns) can remain in the air for extended periods of time,

and once they are inhaled penetrate the lungs and the brain (through the olfactory bulb).

Once inside the body, particles are understood to affect respiratory function, lung devel-

opment, and brain development. As particles can be transferred from the lungs and into the

blood stream, they can also cause cardiovascular problems. These effects are amplified dur-

ing gestation. Maternal exposure to particulate matter is understood to affect fetal health

through a number of physiological pathways, such as oxidative stress, DNA damage to cells,

damage to blood vessels, increased blood pressure, and reduced endothelial function (which

could affect the transfer of nutrients to the fetus). Furthermore, particles can be transferred

directly to the fetus through the bloodstream directly affecting respiratory, neurological and

cardiovascular development (Dejmek et al., 1999; Glinianaia et al., 2004; Bové et al., 2019;

Huifeng et al., 2020).

Particulate matter is understood to affect human capital and development throughout the
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life cycle. It’s effects are not limited to the gestational period, although marginal damages

are understood to be larger during this period. This raises an important empirical challenge:

we have to isolate the effects of prenatal pollution exposure from any contemporaneous effects

experienced by the first-generation throughout their life cycle, or by the second-generation

throughout their life cycle. Simply comparing the outcomes of individuals that experience

prenatal exposure to locations with cleaner air to those of individuals who experience prenatal

exposure to locations with dirtier air would not identify the effects of prenatal exposure

because individuals born in “treatment” locations may be exposed to lower air over their

entire life cycle, and so may their children. To distinguish between the effects of prenatal

exposure and cumulative exposure within and across generations we require a research design

that compares individuals who have different exposure to air pollution during gestation, but

the same exposure post-birth. To formalize this idea we extend the framework presented

by Isen et al. (2017).5 In the process we highlight the mechanisms through which prenatal

pollution exposure could (1) affect the economic outcomes of those directly affected and (2)

transmit across generations to affect their children.

Let an individual’s health stock be a function of inputs during two time periods: h =

h(p1, p2, X(p1)), where p1 represents prenatal pollution exposure, p2 represents post-birth

pollution exposure, and X reflects their genetic endowment, which may be affected by pre-

natal pollution exposure through epigenetic effects — permanent changes in gene expression.

Our research design exploits variation in the introduction of the 1970s clean air act amend-

ments (CAAA), which lowered TSP concentrations in counties that exceeded the air quality

standards, following its implementation. Moreover, we compare cohorts born just before

and just after the CAAA came into effect (relative to cohorts born just before and after in

counties that were unaffected). In this analysis the “treated” cohort born after the CAAA

is exposed to lower p1 and p2. By contrast, cohorts born just before the CAAA had higher

p1 but the same exposure to p2 (assuming they continue to live in their counties of birth).

5The foundations of this model are based on earlier work by Grossman (1972), Bleakley (2010), and
Cunha and Heckman (2007).
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By comparing these two groups, our analysis isolates the additional effect of changes in pre-

natal pollution exposure p1. More precise details on the research design and econometric

specification are presented in section 3.

2.1 First-Generation Effects

For the first-generation we model the effects of prenatal pollution on earnings, which is a

function of the health stock h and education e,

yf = yf (ef , hf ) = yf (ef (hf (pf,1, pf,2, X(pf,1))), hf (pf,1, pf,2, X(pf,1)))

where yf represents earnings and ef represents years of schooling for the first-generation,

those directly affected. The channels through which prenatal pollution exposure affects

earnings can be characterized, by taking the total derivative of earnings, yf , with respect to

prenatal pollution exposure pf,1,

dyf
dpf,1

=
∂yf
∂ef

∂ef
∂hf

[
∂hf
∂pf,1

+
∂hf
∂X

∂X

∂pf,1

]
+
∂yf
∂hf

[
∂hf
∂pf,1

+
∂hf
∂X

∂X

∂pf,1

]
Prenatal pollution exposure, p1, affects the health stock h, which in turn affects earnings

directly ( ∂y
∂h

) as well as indirectly through educational attainment (∂y
∂e

∂e
∂h

).

2.2 Second-Generation Effects

For the second-generation we model the effects of first-generation (parental) prenatal pol-

lution exposure on second-generation educational attainment, which is a function of the

second-generation’s health stock hs. The health stock of the second-generation is a function

of second-generation prenatal pollution exposure, ps,1, second-generation later-life pollution

exposure, ps,2, first-generation earnings, yf (hf , ef ), first-generation education, ef (hf ), first-

generation health stock, hf (pf,1, pf,2, X(pf,1)), and any genetic changes that may have oc-

curred because of first-generation prenatal pollution exposure or second-generation prenatal
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pollution exposure, X(pf,1, ps,1),

es(hs(ps,1, ps,2, X(pf,1, ps,1); yf (hf (pf,1, pf,2, X(pf,1)), ef (hf (·)); ef (hf (·));hf (·)))

The channels through which prenatal pollution exposure affects earnings can be charac-

terized, by taking the total derivative of educational attainment, es, with respect to parental

prenatal pollution exposure pf,1,

des
dpf,1

=
∂es
∂hs

∂hs
∂X

∂X

∂pf,1
(Biological Effects)

+
∂es
∂yf

∂yf
∂hf

[
∂hf
∂pf,1

+
∂hf
∂X

∂X

∂pf,1

]
+
∂es
∂yf

∂yf
∂ef

∂ef
∂hf

[
∂hf
∂pf,1

+
∂hf
∂X

∂X

∂pf,1

]
(Income Effects)

+
∂es
∂ef

∂ef
∂hf,1

[
∂hf,1
∂pf,1

+
∂hf
∂X

∂X

∂pf,1

]
(Parental Education)

+
∂es
∂hf

[
∂hf
∂pf,1

+
∂hf
∂X

∂X

∂pf,1

]
(Parental Health)

Broadly speaking, parental prenatal pollution exposure could affect the educational at-

tainment of the second-generation, either through biological channels ( ∂es
∂hs

) or through the

household environment, i.e, parental resources ( ∂es
∂yf

) and human capital ( ∂es
∂ef

and ∂es
∂hf

).

The remainder of this paper seeks to estimate des
dpf,1

, arising from changes in the level of

parental prenatal particulate matter pollution exposure experienced at the time of the 1970

CAAA. We also analyze the mechanisms that help us to distinguish between the biologi-

cal channels and changes in the household environment. Note that an implicit assumption

underlying the decomposition of these mechanisms is that pf,2, ps,1, and ps,2 are not a func-

tion of pf,1. If, for example, parental prenatal pollution exposure is positively correlated

with pollution exposure in later life then we can’t identify the effects of parental prenatal

pollution exposure separately from later-life first-generation exposure or second-generation

exposure. The following section provides more detail about the research design and empirical
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specifications that help us to isolate that the effects of parental prenatal pollution exposure,

as well as providing direct evidence that there is no differential effect of prenatal pollution

exposure on later life pollution exposure, i.e,
∂pf,2
∂pf,1

= 0, ∂ps,1
∂pf,1

= 0, and ∂ps,2
∂pf,1

= 0.

3 Research Design

In this section we provide an overview of the data and sample construction process, as well

as the empirical specifications used to estimate the effects of parental prenatal particulate

matter exposure on second-generation outcomes.

3.1 Data

To study the intergenerational effects of pollution exposure, it is necessary to identify the

location and date of birth for each parent, infer their exposure to ambient air pollution,

link these parents to their children, and measure outcomes. No single dataset has all of

these features, and so our analysis requires linking decennial Census, administrative records,

and survey data. This linkage is done using unique anonymous personal identifiers called

Protected Identification Keys (PIKs), which can be thought of as “scrambled” Social Security

Numbers. PIKs are assigned to datasets using a probabilistic matching algorithm which links

personally identifiable information (name, date of birth, Social Security Number, etc.) to a

reference file of people in the United States.6

3.1.1 Parent-Child Links

We begin by assembling a database of parent-child links that can be evaluated using survey,

decennial Census and administrative data sources available in the Census Bureau’s data

linkage infrastructure. We identify links in two main datasets: the full count decennial

6For more on the process of PIK assignment see Wagner and Layne (2014) and Appendix C.
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Census from 2000 and 2010, and the American Community Survey (ACS) from 2005–2015.7

The set of links we are able to identify is not, we should stress, the full population of links.

We will miss two main sets of parent-child linkages: parent-child linkages in households

which formed and dissolved between decennial Censuses (who were not ACS respondents),

and parent-child links in which either the parent or child cannot be assigned a PIK. We

focus on two sets of these links — “certain” links, where the survey and Census information

allows us to identify a parent-child link with certainty — and “probable” links, where the

survey and Census information allows us to identify the spouse of a certain link parent, who

are likely also parents (but may be step-parents).

Each dataset contains slightly different information on relationships within households.

The decennial Census and ACS data both contain detailed information on relationships

within the household, with one important limitation — the Decennial Census/ACS relation-

ship question asks for information only on the relationship between an individual and the

head of household. This means that we can identify parent-child links for the head of house-

hold parent with certainty. We additionally identify probable parent-child links between

the head of household’s married or unmarried partner and the head of household’s children.

For head of household-child links, we have additional information about the type of link —

specifically whether a child is natural born, adopted or a step-child. In the main analysis

we focus on certain parent-child links to minimize any attenuation bias introduced through

the incorrect assignment of children to affected, or unaffected, parents. In the appendix

materials we show that our results are robust to incorporating probabilistic links.

3.1.2 Pollution Exposure

To analyze the intergenerational effects of pollution exposure, we need to infer the level of

ambient air pollution that parents were exposed to during gestation. We do this in three

7Other probable links could in principle be measured in the universe of IRS 1040 tax returns, however
we focus on the Census and ACS links as we can infer with certainty these links are between parents and
children.
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steps. First, we link the set of unique parents identified above to the Census Numident to

obtain date and place of birth. We then obtain monitor-level daily pollution measures from

the EPA, which we aggregate to the county level, and link these county-level measures to

the parents’ place of birth.

The Census Numident is a person-level administrative records file derived from the Social

Security’s Numident, which contains all individuals who ever apply for a Social Security

Number. The Numident contains information on individuals’ exact date of birth, and place of

birth. As place of birth information is not standardized, we assign county of birth information

to individuals using a crosswalk, provided by Isen et al. (2017) combined with a probabilistic

matching approach used in Voorheis (2017). Using this approach we identify county of

birth for first and second generation individuals. For cases where county of birth cannot

be assigned using the Isen et al. (2017), we attempt to match the Numident place of birth

string to the United States Geological Survey’s list of places using a fuzzy string matching

algorithm based on the optimal string alignment (OSA) distance metric.

With information about the place of parents’ birth in hand, we infer the level of pollution

exposure experienced by these individuals based on average pollution concentrations during

the 270 days of gestation within their county of birth. To gather this pollution exposure

information, we rely on monitor data from the EPA, which we retrieve using a public facing

API8. Our pollutant of interest is particulate matter. For the relevant period of time (around

1970), the primary regulatory definition of particulates was total suspended particles (TSP),

defined as particulate matter with a density of less than 50 microns, measured in units

µg/m3. We retrieve data from all TSP monitors between 1960–1980.

The TSP standard was set based on a 24-hour sampling, and hence the monitor-level

data was collected on a daily basis. Our baseline approach for aggregating these daily

monitor-level observations is as follows. For each county-day, we calculate the average TSP

concentration across all active monitors in that day, which we take as the average exposure to

8See https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html for more details.
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TSP in that county on that day. We then calculate county-level gestational period averages

of prenatal TSP exposure for each birth between 1960 and 1980.

3.1.3 Outcomes

Finally, we require information on outcomes for parents and children, as well as other infor-

mation on observable socio-demographic characteristics. We measure these outcomes using

the ACS, which contains detailed information on the family structure, human capital and

labor market outcomes we are interested in. Note that since the ACS is a nationally repre-

sentative survey of a sample of households (about 1 percent per year), we observe outcomes

from only a fraction of the parents and children identified above.

Our main outcome of interest is college attendance for the second generation. We focus

on this outcome because we have limited data on earnings, given the timing of when the first

and second generations are born. In the absence of earnings data we believe that college

attendance data is the most important and interesting outcome to explore. We also explore

other measure of human capital attainment, such as high school completion. The reason

we focus on human capital accumulation is because very few individuals over the age of

22 at ACS response have parents born after 1971, limiting the sample available to examine

the effects on wages and labor force participation. Human capital measures available in

the ACS are prevalent among people under the age of 22, who are much more likely to

have parents that were affected by the 1970 CAAA. Additionally, although some second

generation individuals would have earnings in IRS administrative records, there are very

few, if any, individuals around the “overtaking age” when earnings are near the lifecycle

peak.9

We also explore several outcomes for the first generation with a view to understanding

how the first-generation is affected and the mechanisms through which the consequences

of prenatal pollution exposure could be transmitted across generations. We explore family

9For instance, in 2018, the only 30 year olds with parents born after the CAAA would have been born
when their parents were 16.
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structure using information on marital status and fertility. We are interested in exploring

these outcomes for two reasons. First, we believe that family structure could plausibly

affect parental investments and resources available to children, which could be an important

mechanism for intergenerational transmission. Second, we are interested in the potential for

selection into the second generation sample — pollution exposure could affect the likelihood,

or timing, of children. The ACS microdata contains information on the presence of own

children (asked to all women of child bearing age) and number of own children (calculated

based on all relationship questions in the household) We also construct variables providing

information on the timing of children. Beyond changes in family structure we also explore

economic outcomes, defining variables for unemployment, public assistance receipts, and

wages from detailed ACS questions on income and labor force participation.

The ACS also provides sociodemographic information for the second generation, including

race, sex, and age. The first and second generation do not always appear in the ACS at the

same time and so we also collect demographic characteristics from the decennial Census to

control for parental characteristics when evaluating second-generation outcomes. We also

collect information on the characteristics of first- and second-generation county of birth —

population, employment, personal income per capita and total transfer income — from the

Bureau of Economic Analysis’ Regional Product Accounts.

3.2 Empirical Strategy

We are interested in estimating the relationship between prenatal particulate matter exposure

and the later life outcomes of the children of affected individuals 40-50 years later — the

second generation. Our baseline model takes the following form,

Outcomei,j,c,t = β0 + β1TSPj,c,t + γX ′j + δX ′ct+ αjc + αjst + εi,j,c,t,y (1)

Outcomes are measured for child i born to parent j. Exposure is measured for parent
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j. Specifically, TSPj,c,t is the average particulate matter concentration that individual j

was exposed to in county c and year t, measured in µg/m3. Xj is a vector of individual

characteristics, including age, race, and sex, as well as in-utero weather exposure. Xct is a

vector of county-level characteristics, measured in 1969, interacted with linear and quadratic

time trends. αjc are county-of-birth fixed effects that control for time-invariant unobserved

determinants of the labor market outcomes and family structure for parents born in county c.

αjst are birth-state × birth-year fixed effects which control for time-varying determinants of

the long-run outcomes, common across all parents born in a state s in year t. The coefficient

of interest is β1 which reflects the effect of a one-unit increase in parental, prenatal, TSP

exposure on child j’s later life outcomes. In extensions we include second-generation controls,

including the second-generation birth-county fixed effects, αic, second generation birth-state

× birth-year fixed effects, αist, and second-generation individual characteristics, X ′i. Across

all specifications we cluster our standard errors by the first generation’s county of birth —

the level at which we measure exposure.

There are two key threats to identification that need to be addressed. First, it is highly

likely that exposure to particulate matter is correlated with many observable and unobserv-

able characteristics that are correlated with long-run economic and social outcomes. This

is a standard identification when trying to identify the effects of endogenous pollution on

any outcomes. While the inclusion of birth-county and birth-state × birth-year fixed effects

will absorb any time-invariant county-specific determinants and time-varying determinants

common to all individuals in a given state-year, it is likely that individual-level or local-level

factors that correlate with particulate matter still exist, leading to bias in our OLS estimates

of β1. For this reason, we use an instrumental variables design.

The second identification issue is specific to identifying the effects of early-life shocks on

later life outcomes. Even if the shock is as good as randomly assigned one would want to

show that prenatal exposure to a shock does not affect later life exposure. This was the focus

of our discussion in the conceptual framework. If differences in early-life pollution exposure
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(or any early life shock) are also correlated with differences in later life pollution, it is not

possible to disentangle the persistent effect of early-life shocks from later life exposures. We

argue that our choice of instrumental variable allows us to address this issue.

3.2.1 Using the 1970 CAAA in an Instrumental Variables Design

To address the endogeneity concerns related to pollution exposure and isolate the effects of

early-life pollution exposure, we instrument for changes in particulate matter exposure using

the introduction of the 1970 Clean Air Act Amendments. The Clean Air Act was introduced

in 1963 and regulates air pollution in the United States and is the largest environmental

program in the country. It requires the EPA to develop and enforce regulations to protect

the population from exposure to airborne pollutants that are known to be hazardous to

human health. In 1970 the Clean Air Act was amended, authorizing federal regulations to

limit emissions, resulting in a major shift in the federal government’s role in air pollution

control. As a consequence of the 1970 amendments the EPA established the national ambient

air quality standards (NAAQS), specifying the minimum level of air quality that is acceptable

for six criteria air pollutants — sulfur dioxide (SO2), particulate matter (TSP, PM2.5 and

PM10), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and lead.

The NAAQS standards were applied at the level of Air Quality Control Regions (AQCRs),

which were EPA-defined collections of counties. AQCRs that exceeded these standards were

considered to be nonattainment areas. As a consequence of being designated a nonattainment

area, a plan must be implemented to meet the standard. The EPA defined an AQCR as

being in nonattainment of NAAQS if any of the individual monitors in the AQCR fell outside

the NAAQS standards. Thus effectively the NAAQS standards bind at the county level.

Counties with monitors out of attainment needed to make large improvements in air quality,

while counties which were in attainment did not, even if they were located in an AQCR which

was out of attainment (in other words, attainment counties in nonattainment AQCRs were

inframarginal). Thus, the relevant fact for us is whether a county was in nonattainment
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of the NAAQS standards; however, the EPA did not publish county-level nonattainment

designations until the late 1970s.10 Thus we follow the existing literature in modelling

the effect of the Clean Air Act using the nonattainment status of counties, not AQCRs,

noting that it is the bindingness of EPA regulations, and not the nonattainment designations

themselves, which produce our quasi-experimental variation in pollution exposure.

Following the existing literature we reconstruct which counties would have been in nonat-

tainment using TSP concentrations from the years before the CAAA was enacted.11 Nonat-

tainment of the primary air quality standard for TSP set in the 1970 CAAA occur if either

a) a county’s annual average (geometric mean) TSP concentration is above 75 µg/m3, or b)

the second highest daily TSP concentration is above 260 µg/m3. We use the monitor-level

observations discussed above to calculate the geometric mean and second highest daily TSP

concentration for all counties with at least one monitor in 1970. This allows us to categorize

258 counties as “nonattainment” counties, and 319 counties as “attainment” counties.12

We model the change in air pollution using an indicator variable for county nonattainment

status interacted with an indicator for the years 1972 or later. The first-stage regression

in this two-stage least squares estimator is essentially a difference-in-differences regression

model,

TSPj,c,t = α0 + α1(Nonattainmentc,1970 × 1[τ > 1971]) + αjc + αjst + γX ′j + δX ′ct+ νj,c,t (2)

where TSP exposure for parent j in county c in year t is regressed on a time-invariant

county indicator equal to 1 if a county is designated as nonattainment, Nonattainmentc,1970,

10Note also that though in principle it would possible to define an AQCR-level treatment, essentially all
monitored AQCRs had at least one monitor out of attainment, rendering this approach futile in practice.

11The EPA did not make county-level nonattainment designations publicly available as noted above.
However, TSP air quality standards are known, and so we can reconstruct which counties would have been
in nonattainment using monitor-level data

12Consequently, we have to restrict our analysis to first generation individuals born in these 577 counties
and second generation individuals born to individuals born in these counties, as the pollution exposure of
individuals born in other counties was unmeasured during this time period. Note however that these 577
counties contained about two thirds of the US population in 1969 and cover all 50 states.
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interacted with an indicator equal to 1 for the years after the CAAA went into affect,

1[τ > 1971]. The interaction term is therefore equal to 1 for nonattainment counties following

the implementation of the 1970 CAAA. The parameter of interest is α1, which provides a

difference-in-differences estimate of the impact of nonattainment designation on prenatal

TSP exposure in the years after CAAA regulations went into place. This research design

also isolates the effects of prenatal pollution exposure. The introduction of the 1970s CAAA

means that we are comparing cohorts who have different exposure to TSPs during gestation,

but the same exposure post-birth. Table 2 shows while the 1970s CAAA reduced first-

generation prenatal exposure, there is no statistically significant effect on first-generation

later life exposure (column 2), second-generation prenatal exposure (column 3), or second-

generation later-life exposure (column 4). In Table A2 we also show that there is little

evidence of differential migration. We estimate that exposure to the 1970 CAAA is associated

with small reductions in the likelihood that the first-generation ever migrates out of their

county of birth, corresponding to a 0.78 percentage point reduction. However, we do not

estimate any effect on the likelihood that the first-generation moves out of state. We also do

not see any evidence that the second-generation migrate away from their parents county-of-

birth, indicating that first-generation movers are those without children. This suggests that

differential migration is unlikely to be an important concern. Ultimately, this is reflected in

the fact that there is no differential exposure to pollution throughout the life-cycle.

In the second stage, we use the predicted TSP levels from equation 2 in place of observed

TSP levels,

Outcomei,j,c,t = ρ0 + ρ1T̂ SP j,c,t + αjc + αjst + γX ′i + δX ′ct+ εi,j,c,t,y (3)

where the coefficient of interest ρ1 captures the effect of a one-unit increase in CAAA-driven

parental, prenatal, TSP exposure on child j’s later life outcomes.

We show, consistent with previous research on the Clean Air Act, that the first stage re-

lationship is strong — that nonattainment status is associated with significant and persistent

20



declines in particulate matter concentrations in the years after the 1970 CAAA came into

effect. Table 1 presents the first-stage relationship for our college attendance sample. We

observe across all specifications that nonattainment is associated with an 8 µg/m3 reduction

in TSP, on average. In Figure 1 we explore the effects of nonattainment on prenatal TSP

exposure in an event study framework, where nonattainment has separate effects in each

year. Prior to the introduction of the 1970s CAAA we find no statistically significant, or

economically meaningful, differences between nonattainment and attainment counties, pro-

viding support for the parallel trends assumption. Following implementation, we estimate

an immediate and persistent reduction in prenatal TSP exposure, as would be expected.

In addition to providing evidence in support of the parallel trends assumption we show

that there are limited differences between attainment and nonattainment county character-

istics prior to the 1970 CAAA (Table A1). Isen et al. (2017) also show that a nonattainment

designation is not correlated with any changes to the observable characteristics of mothers

that gave birth in the years following the 1970 CAAA.

The main concern regarding the instrumental variable research design is the exclusion

restriction. To identify the intergenerational effects of TSP exposure it must be the case that

the CAAA doesn’t affect outcomes in any other way than through reductions in pollution.

Isen et al. (2017) make the point that nonattainment designations could affect economic

competitiveness (Greenstone, 2002; Greenstone et al., 2012; Walker, 2011, 2013). However,

existing evidence suggests that the effects on the broader local economy are small, affect-

ing less than 0.7 percent of the total workforce and is based on the 1990 Clean Air Act

Amendments (Walker, 2013). As the 1970 CAAA was the first major regulation to be in-

troduced, actions to reduce emissions may have been less costly in 1970 due to low-hanging

fruit, than in the 1990s, attenuating concerns about economic competitiveness. Neverthe-

less, it is possible that the 1970 CAAA contributed to a decline in economic conditions for

nonattainment counties, affecting the long-run economic prospects of affected individuals.

As competitiveness effects would be expected to have the opposite effects on health to reduc-
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tions in pollution exposure, our 2SLS estimates will understate the intergenerational effects

of pollution exposure if the exclusion restriction is violated. The reduced form effect of

nonattainment remains valid and is interpreted as the intergenerational effects of the 1970

Clean Air Act Amendments, rather than pollution. Our reduced form and corresponding

2SLS estimates produce conceptually identical results, although the signs of the effects are

different – nonattainment increases second generation human capital, and pollution exposure

decreases second generation human capital.

4 Results

Table 3 presents the results of our analysis on the effects of parental, prenatal, pollution expo-

sure on the likelihood that their child attends college, using our preferred second-generation

sample that uses certain parent-child links. We estimate that a 10 µg/m3 reduction in first

generation prenatal pollution exposure is associated with a 3.2-3.8 percentage point increase

in the likelihood that the second-generation attends college.13 Relative to the mean, this

corresponds to an 8% increase in college attendance. This is a substantial effect, equivalent

in magnitude to the second-generation effect of 0.2-0.25 Head Start Programs (Barr and

Gibbs, 2017). In Panel B of Table 3 we present reduced form effects, capturing the effect of

the 1970 CAAA on second-generation outcomes. We estimate that the reduced form effect

of the 1970 CAAA is associated with a 2.6-3 percentage point increase in the likelihood of

college attendance. Using the average nonattainment induced changes in TSP for this sam-

ple (≈ 8µg/m3) our IV estimates imply a 2.6-3.08 percentage point increase in the likelihood

of attending college. The 2SLS and reduced form estimates are very similar.

We also explore whether parental prenatal TSP exposure affects the likelihood of drop-

ping out of high school. In Table A3 we estimate that a 10 µg/m3 reduction in first generation

prenatal pollution exposure is associated with a 0.5 percentage point reduction in the likeli-

13In Tables A7, A7, and A9 we estimate the effects defining exposure based on whether it is maternal,
paternal, or if both parents were exposed. We estimate larger effects if both parents were exposed, but the
combined effect is smaller than the sum of mother-only or father-only effect.
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hood that their child drops out of high school. While the absolute effect is smaller, dropping

out of high school is much rarer than attending college (6% of our sample drop out of high

school). A 0.5 percentage point reduction in the likelihood of dropping out of high school is

also an 8% reduction, relative to the mean.

While we are not able to examine the intergenerational effects of prenatal pollution

exposure on earnings, the effects on college attendance plausibly have meaningful impacts

on the earnings potential of second-generation individuals. Using a college wage premium

of $28,000 p.a. (estimated using the public use CPS-ASEC), combined with a graduation

rate of 50 percent to convert college attendance to college completion14, and a 3 percent real

discount rate (5 percent discount rate + 2 percent wage growth) we predict a $1,515/10µg/m3

increase in second generation cumulative lifetime earnings at age zero of the first generation.

Combining the number of children born in nonattainment counties in 1972 (1.52 million),

the probability that one of these individuals had a child (0.63), and the average number

of children that were born to these individual (2.24), we calculate that the total second

generation earnings effects for the 1972 cohort is around $3.2 billion dollars. If reductions

in TSP were persistent (and evidence suggests they were) we’d expect these benefits to be

realized for each cohort since 1972. If the intergenerational effects of prenatal pollution

exposure have effects on income other than through college this number represents a lower-

bound estimate of the second-generation benefits.

Our results are robust to including probabilistic links, although the estimates are marginally

smaller, consistent with the introduction of classical measurement error (Table A6). Our re-

sults are also robust to reducing the time-window over which we estimate the effects (Tables

A4 and A5). Using an alternative RDD research design (discussed in Appendix A.5) we esti-

mate that nonattainment is associated with a 2-4 percentage point increase in the likelihood

of second-generation college attendance (Table A10).

14See https://nces.ed.gov/programs/coe/indicator_ctr.asp
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4.1 Exploring Mechanisms

What are the mechanisms through which prenatal pollution exposure propagates across

generations. We posit that there are two broad channels through which these effects could

arise. The first channel is biological. Gestational pollution exposure could result in epigenetic

changes, i.e., permanent changes in gene expression. If so, hereditary transmission of these

changes could affect the second generation. The second mechanism is economic. Gestational

pollution exposure affects the human capital and earnings of the first generation. In turn,

parental resources and investments may affect the likelihood of college attendance for their

children.

4.1.1 Biological Effects

To explore the empirical relevance of a hereditary mechanism we examine the differential

effect of parental, prenatal, pollution exposure on adopted and biological children. This

exercise allows us to examine the degree to which permanent changes in gene expression,

triggered by prenatal pollution exposure, are passed down from parent to child, affecting

human capital, and in turn the likelihood of attending, or returns to college attendance.

As the Decennial Census and ACS both ask whether the child of the head of household is

natural born or adopted, we are able to identify a set of parent-child links for which there

should be no direct hereditary mechanism.

Biological children could be affected through both changes in household environment

(ν) and through genetic channels (γ). By contrast, adopted children are only be affected

through the household environment (ν) — i.e. parental resources and investments. If the

effects on college attendance are entirely driven by genetic pathways (ν = 0) then we would

expect there to be no effect on adopted children, i.e, a differential effect that is the negative

of the effect on biological children, −γ. If the college attendance effect is entirely driven by

the household environment (γ = 0) then there should be no differential effect on adopted

children, and the coefficient on the interaction term should be zero.
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Of course, it is entirely possible that the college attendance effect is a mix of both channels

(1 − φ)ν − (φγ + (1 − φ)ν) = −φγ at which point the effect on adopted children should be

smaller than the effect on biological children, unless parents make differential investments

in adopted children, at which point the effect could be larger than the effect on biological

children. We evaluate these considerations by estimating our IV specification, incorporating

the interaction between parental TSP exposure and whether the child is adopted.

There are two potential concerns. First, one may be concerned that there is a differential

propensity to adopt or not adopt children in nonattainment counties, resulting in selection

into the second-generation adopted sample. In column 1 of Table 4 we estimate that there

is no statistically significant or quantitatively meaningful effect of prenatal TSP exposure

on the likelihood of adopting a child. Second, adopted children may be affected through

hereditary channels if their biological parents were born in nonattainment counties at the

same time as their adopted parents. However, this requires that their adopted parents and

biological parents are born at the same time and location, which we argue is unlikely to

be the case in a systematic way. In support of this assumption, we observe that adopted

children are more likely to be born in a different county from their adopted parents than

biological children.

The remaining results in Table 4 explore whether there is a differential effect of prenatal

pollution exposure on second-generation college attendance for adopted versus biological

children. Across all specification we estimate no statistically significant, differential effects

of parental pollution exposure. As a robustness check we explore differences between step-

children and biological children. We do not estimate any statistically significant differential

effects of parental pollution exposure between these groups (Table B1). This suggests that

the estimated college attendance effect likely arises due to parental resources and investments,

rather than genetic pathways (Bjorklund and Chadwick, 2003; Bjorklund, 2006; Bjorklund

et al., 2007, 2010).
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4.1.2 Income Effects

Having found little evidence to support a biological mechanism we turn to economic channels.

First, we explore the effects of prenatal pollution exposure on labor market outcomes. Table

5 presents the results of this analysis.

We estimate that a 10 µg/m3 reduction in in-utero exposure to TSP is associated with

a 1.2 percent increase in earnings at the time of ACS response. Evaluated at the mean

earnings, this corresponds to an annual earnings effect of $367 compared to the control

mean. This effect is similar in magnitude to the estimates presented in Isen et al. (2017).

This is encouraging for two reasons. First, we are using the same methodology. Second, our

findings highlight the external validity of the Isen et al. (2017) findings, that are restricted to

24 states. Our sample contains individuals in all states which had active particulate monitors

in 1970, and does not restrict the age of respondents to 29-31.

Assuming that the estimated earnings effect is constant over the life cycle, and that

earnings are discounted at a real rate of 3 percent back to age zero, we calculate that the

lifetime earnings effect of a 10 µg/m3 increase in TSP is $3,499 per person ($5.3 billion for

the 1972 cohort).

We also explore effects on labor force participation (column 2), unemployment (column

3), and public assistance (column 4). We fail to reject the null hypothesis that there is no

relationship between gestational TSP exposure and these outcomes. The absence of any

effects suggest that TSP exposure does not appear to affect labor market outcomes on the

extensive margin. This is consistent with Isen et al. (2017) who estimate increases in the

number of quarters worked, rather than extensive margin labor force participation effects.

Finally, in Table B4 we explore first-generation educational outcomes. We fail to reject the

null hypothesis that prenatal TSP exposure has any effect on years of schooling or college

attendance. This is consistent with Isen et al. (2017) who argue that the effects on earnings

are too small to be driven by schooling. Collectively, these results suggest that the earnings

effects likely reflect a broader health sequelae.
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The estimated income effects imply a relationship between parental income and college

attendance, which is much larger than the existing literature. Lovenheim (2011) and Loven-

heim and Lockwood Reynolds (2013) explore the effects of an increase in household wealth

on college attendance finding that a $10,000 increase in housing wealth is associated with

a 0.71 - 0.92 percentage point increase in the likelihood of attending college. Bulman et

al. (2017) explore the effects of winning the lottery on college attendance. They find that

a $10,000 increase in housing wealth is associated with a 0.2 percentage point increase in

attending college. If our findings were driven entirely by the increase in parental earnings

then a $10,000 increase in household wealth would be associated with an 9.2-11 percentage

point increase in the likelihood of attending college. As such, we believe that the magnitude

of the effect is too substantial to be driven entirely by the increase in parental income.

One caveat with this interpretation is that the existing literature explores the effects of an

increase in individual household wealth. By contrast, our effect captures an increase in wealth

for the whole community. Consequently, there may be general equilibrium effects associated

with this increase in wealth that contribute to college attendance decisions. An additional

limitation of the existing literature is that wealth shocks are experienced much later in life.

Potential college attendees are usually in their teenage years at the time that the wealth

shock is realized. For example, Lovenheim (2011) and Lovenheim and Lockwood Reynolds

(2013) look at wealth shocks in the 4 years prior to turning 18, and most of the oldest child

in Bulman et al. (2017) are teenagers at the time that their parents win the lottery. It is

entirely possible that wealth shocks during the teenage years have much less effect on college

attendance. Increased earnings earlier in the life cycle may be complementary with human

capital investments affecting the educational trajectory that children take. In our sample

the second-generation experience the wealth shock from birth and so it is possible that this

translates into a more elastic college-earnings relationship.
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4.1.3 Family Structure and Fertility Effects

In light of the income effects it is possible that part of the college attendance effect reflects

selection into the second-generation sample through fertility effects. If treated individuals

are richer and healthier this may affect the likelihood of family formation, through marriage

and fertility choices. Becker (1960) posits that wealthier parents may have a preference for

quality over quantity of children. However, empirical evidence also suggests that increases

in earnings or wealth are associated with increases in fertility (Lovenheim and Mumford,

2013; Black et al., 2013; Dettling and Kearney, 2014; Kearney and Wilson, 2018; Autor et

al., 2019). As such, we might expect parents that were exposed to lower levels of TSP to

have smaller families. If family size is negatively correlated with the likelihood of college

attendance then this could explain part of our results. It is also possible that pollution

exposure could affect fertility or fecundity (Carre et al., 2017). In such a case there may be

reduced selection into the second-generation sample for the control group.

Table 6 presents our findings, exploring the family structure effects of prenatal exposure

to TSP. We estimate that there are few meaningful changes in family structure. We fail to

reject the null hypothesis that there is any change in the likelihood of being married. We

also fail to reject the null hypothesis that prenatal pollution exposure has no effect on the

likelihood of having any children, the number of children, or the timing of children.

One might be concerned that the average effect may be a net zero rather than a true

zero if income effects have a differential fertility response for men and women. Economic

theory suggests that improvements in male labor market conditions should be associated

with increases in fertility, while better wages and employment opportunities for women

should have opposing income and substitution effects (Schaller, 2016). In Tables B2 and

B3 we explore wehther there are differential family structure effects by sex. We do not find

any effect of particulate matter reductions on the likelihood that women get married, on the

number of children, or the age at first birth. The effects are small in magnitude. For men,

we estimate that a 10 µg/m3 reduction in prenatal TSP exposure is associated with a 0.6
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percentage point decrease in the likelihood of getting married and 0.025 fewer children (a

2.3% reduction relative to the mean). Both effects are statistically significant at the 10%

level, economically small, and contrast with what economic theory would predict. As such,

we do not see these changes as having economically meaningful effects on fertility or family

structure.

In Table B5 we explore whether reductions in particulate matter exposure had effects

on who individuals married, an examination of assortative matching. We estimate that

a 10 µg/m3 reduction in prenatal TSP exposure is associated with a 64 percentage point

increase in the likelihood that an individuals’ partner was treated, but no meaningful effects

on the characteristics of partners. These findings are interesting because it suggests that our

analysis of individual income effects likely understates the increase in household earnings. If

both parents were affected a $10,000 increase in household wealth would instead predict a

4.6-9.5% increase in the likelihood of attending college.15 This is still a large effect, however,

in light of the caveats discussed above (i.e., general equilibrium effects + earlier life exposure

to household wealth increase) it is possible that parental resources are an important driver

of the college effects.

Collectively, these findings suggest that our results are unlikely to be driven by differential

selection into the second generation sample and give further support to the role that parental

resources might play in driving the college attendance effects..

4.1.4 Parental Investments

Traditionally, models exploring the mechanisms underlying intergenerational persistence

have implicitly assumed that all parents as equally good. More recently, Cunha and Heckman

(2007), Heckman and Mosso (2014), and Becker et al. (2018) model increases in parental hu-

man capital as having an effect not only on the earnings of parents but also the production

of their children’s human capital, introducing a new mechanism — parental investments.

15We bound the effects using the smallest college effect in Table 3 and the largest effect in Table A9.
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If reductions in prenatal pollution exposure increased parental health as well as wealth,

then parents may be better placed to spend time and make investments in their children

— reductions in pollution may improve parental human capital, and in turn improve child

outcomes (Murnane et al., 2000; Heckman and Carneiro, 2003; Belfield et al., 2006; Cunha

et al., 2010; Heckman et al., 2013; Lundberg, 2017; Akee et al., 2018). With the data avail-

able it is difficult to directly evaluate this consideration. Belfield et al. (2006) explore the

effects of the Perry Preschool program, which has been shown to have significant effects on

childrens’ cognitive, and especially non-cognitive skills. Barr and Gibbs (2017) explore the

intergenerational consequences of the Head Start program and estimate that it increased

the likelihood of second-generation college attendance by 15 percentage points. As such, a

10µg/m3 reduction in TSP has an equivalent effect on college attendance to 0.2-0.25 Head

Start Programs. Lundberg (2017) explores how specific non-cognitive and cognitive skills are

associated with college attendance. We calculate that a 10µg/m3 reduction in TSP would

be equivalent to a 2 standard deviation increase in self esteem, a 0.93 standard deviation

reduction in impulsivity, a 0.73 standard deviation decrease in schooling problems and a 0.38

standard deviation increase in cognitive ability. These are meaningful effects. As such it is

possible that parental investments in cognitive and non-cognitive skills could contribute at

least part of our results.

One concrete approach to understanding the relevance that parental investments in cog-

nitive and non-cognitive skills may play is to examine the relationship between prenatal

pollution exposure and parental time-use. We do this by linking the public use American

Time-Use Survey with our existing data infrastructure. We caveat that sample size is sub-

stantially smaller in this analysis because we are restricted to ATUS respondents born in

monitor-counties during our evaluation window.

We explore the effects of prenatal pollution exposure on the time spent on educational

activities with their children. We look at the effects of parental exposure on the time spent

reading with children, the time spent on educational activities, and the total time spent with
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children. We find that reductions in prenatal TSP exposure are associated with an increase

in time spent reading to children. Our estimate corresponds to an average increase of 1.5

minutes per day for each 10 µg/m3 decrease in TSP. This is a 54% increase relative to the

control mean. Effects on time spent on other educational activities and total time spent

with children point in the same direction, however, they are less precisely estimated. Taken

at face value, the central estimates suggest a 17% increase in time spent on educational

activities and a 4.5% increase in the total time spent with children.

Evidence suggests that reading to your children can help them to develop empathy,

deal with difficult issues, improve vocabulary and background knowledge, increase attention

span, and improve family relationships (Anderson et al., 1985; Koralek, 2014; Massaro, 2017;

Mendelsohn et al., 2018). We do not claim that the college effects are necessarily driven by

reading alone. Instead, it is likely that parents who spent time reading to their children are

also closely engaged with them along multiple dimensions. Consequently, we argue that the

estimated college attendance effects are likely to arise, at least in part, because of parental

investments and choices that affect cognitive and non-cognitive skills.

5 Conclusion

We provide early quasi-experimental evidence on the intergenerational consequences of pre-

natal exposure to ambient air pollution. Exploiting variation in particulate matter, induced

by the introduction of the 1970 Clean Air Act amendments— which substantially reduced

ambient air pollution — we find that the children of those that were were directly affected

experienced substantial increases in the likelihood of attending college 40-50 years later. We

present evidence to suggest that the intergenerational transmission of this early-life shock to

parental endowments arises through increased parental resources and investments.

Back-of-the-envelope calculations suggest that the combined cumulative lifetime earnings

effects for the 1972 cohort are comparable in magnitude to the mortality benefits estimated
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in Chay and Greenstone (2003a). To date, the monetized mortality benefits of environmen-

tal regulations constitute the vast majority of overall benefits in benefit-cost analysis. We

argue that accounting for intergenerational effects would substantially increase the returns

to investments in environmental quality. Within-generation estimates of marginal damages

substantially underestimate the total welfare effects of improving environmental quality.

It is striking that these effects arise from such short exposure times, early in life. If

relatively low levels of air pollution have intergenerational consequences through parental

resources and investments, it is likely that larger shocks and policies also have intergener-

ational consequences. This reinforces the potential welfare benefits that could be realized

through a reallocation of resources from later to earlier in the life-cycle. Understanding

the margins through which such reallocations can be delivered remains an important area

for research. Our findings suggest that investments in environmental quality could be an

important contribution to such efforts.

In turn, our results have important implications for inequality and economic opportunity.

It is well established that economic and environmental inequality walk hand-in-hand. Indi-

viduals who live in low-income areas and disadvantaged communities are exposed to higher

levels of pollution than those that live in high-income areas (Commission for Racial Justice,

United Church of Christ, 1987; Mohai et al., 2009; Banzhaf et al., 2019; Colmer et al., 2020;

Currie et al., 2020). Early-life exposure to pollution has intergenerational consequences that

are propagated through economic resources and investments. As such our results open up

new lines of inquiry, suggesting that environmental quality may have important implications

for upward mobility and economic opportunity.
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Tables and Figures

Figure 1: The First-Stage Relationship between Nonattainment and First-Generation TSP
Exposure (Second-Generation College Attendance Sample)
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Table 1: The First-Stage Relationship between Nonattainment and First-Generation TSP
Exposure (Second-Generation College Attendance Sample)

First-Generation Prenatal TSP Exposure
(1) (2) (3) (4)

Nonattainment × Post -8.043*** -8.038*** -7.883*** -7.795***
(2.231) (2.232) (2.218) (2.213)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 238,000 238,000 234,000 234,000

Control Mean 79.27 79.27 79.31 79.31

First Stage F-Stat 12.99 12.97 12.63 12.41

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Decen-
nial Census Short Form 2000 and 2010 and ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic
in age, pre-CAA 1970 county of birth economic characteristics (employment, to-
tal transfer income, personal income per capita) interacted with quadratic trends,
county of birth weather controls including average and maximum temperature and
number of precipitation days during an individual’s nine month gestational period.
Column 2-4 contain additional second generation demographic characteristics in-
cluding race/ethnicity, sex and a quadratic in age. Standard errors are clustered at
the parent’s county of birth level. Approved for release by the Census DRB, au-
thorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017,
CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table 2: The Relationship between Nonattainment and Pollution Exposure Over the Life
Cycle

(1) (2) (3) (4)
First-Gen First-Gen Second-Gen Second-Gen
Prenatal Later-Life Prenatal Later-Life
Exposure Exposure Exposure Exposure
(µg/m3) (µg/m3) (µg/m3) (µg/m3)

Nonattainment × Post -9.951*** 0.985 1.316 4.467
(2.137) (0.831) (3.239) (3.124)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Prenatal Controls Yes Yes Yes Yes

Observations 4,773,000 2,551,000 377,000 219,000

Control Mean 79.27 39.84 53.91 39.2

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010 and ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic in age,
pre-CAA 1970 county of birth economic characteristics (employment, total transfer income,
personal income per capita) interacted with quadratic trends, county of birth weather controls
including average and maximum temperature and number of precipitation days during an in-
dividual’s nine month gestational period. Column 3-4 contain additional second generation
demographic characteristics including race/ethnicity, sex and a quadratic in age. Standard
errors are clustered at the parent’s county of birth level. Approved for release by the Cen-
sus DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-
017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table 3: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) −0.0353∗∗ −0.0325∗∗ −0.0364∗∗ −0.0385∗∗

(0.0143) (0.0138) (0.0150) (0.0156)

Panel B: Reduced Form

Nonattainment × Post 0.0284*** 0.0261*** 0.0287*** 0.0300***
(0.0078) (0.0078) (0.0079) (0.0079)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 238,000 238,000 234,000 234,000

Control Mean 0.529 0.529 0.528 0.528

First Stage F-Stat 12.99 12.97 12.63 12.41

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010 and ACS 2005 through 2015. All regressions include
individual demographic controls including sex, race/ethnicity and quadratic in age, pre-CAA 1970
county of birth economic characteristics (employment, total transfer income, personal income
per capita) interacted with quadratic trends, county of birth weather controls including average
and maximum temperature and number of precipitation days during an individual’s nine month
gestational period. Column 2-4 contain additional second generation demographic characteristics
including race/ethnicity, sex and a quadratic in age. Standard errors are clustered at the parent’s
county of birth level. Approved for release by the Census DRB, authorization numbers CBDRB-
FY2020-CES010-015, CBDRB-FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-
FY2020-CES010-031.
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Table 4: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation Col-
lege Attendance: Adopted vs. Biological Children

First-Gen Adopt Second-Generation College Attendance
(1) (2) (3) (4) (5)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) 0.0014 -0.0353** -0.0323** -0.0357** -0.03768**
(0.0030) (0.0143) (0.0137) (0.0149) (0.0155)

First-Gen Prenatal TSP -0.0046 -0.0073 -0.0164 -0.0204
× Second-Gen Adopted (0.0259) (0.0252) (0.0256) (0.0253)

Panel B: Reduced Form

Nonattainment × Post -0.0023 0.0283*** 0.0258*** 0.0277*** 0.0289***
(0.0026) (0.0079) (0.0080) (0.0081) (0.0080)

Nonattainment × Post 0.0068 0.0116 0.0299 0.0361
× Second-Gen Adopted (0.0444) (0.0431) (0.0439) (0.0426)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes Yes

Second-Gen Controls No No Yes Yes Yes

Second-Gen County FE? No No No Yes Yes

Second-Gen SY FE? No No No No Yes

Observations 4,773,000 238,000 238,000 234,000 234,000

Control Mean 0.11 0.529 0.529 0.528 0.528

First Stage F-Stat 20.02 6.50 6.49 6.4 6.25

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident, Decennial Cen-
sus Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include individual demographic controls
including sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic characteristics (employ-
ment, total transfer income, personal income per capita) interacted with quadratic trends, county of birth weather
controls including average and maximum temperature and number of precipitation days during an individual’s nine
month gestational period. Column 3-5 contain additional second generation demographic characteristics including
race/ethnicity, sex and a quadratic in age. Standard errors are clustered at the parent’s county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017,
CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table 5: The Effect of First-Generation Prenatal TSP Exposure on First-Generation Labor
Market Outcomes

(1) (2) (3) (4)
logEarnings Labor Force Unemployed Public Assistance

Participation

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.012** 0.0025 -0.0003 -0.0017
(0.0061) (0.0019) (0.0009) (0.0006

Panel B: Reduced Form

Nonattainment × Post 0.013** -0.0026 0.0003 0.0018
(0.0060) (0.0019) (0.0009) (0.0005)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

Individual Controls Yes Yes Yes Yes

County-level Controls Yes Yes Yes Yes

Observations 4,382,000 6,477,000 6,477,000 9,060,000

Control Mean $30,638 0.823 0.0456 0.006

First Stage F-Stat 19.86 18.8 18.8 18.93

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident, Decennial Cen-
sus Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include individual demographic controls
including sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic characteristics (em-
ployment, total transfer income, personal income per capita) interacted with quadratic trends, county of birth
weather controls including average and maximum temperature and number of precipitation days during an indi-
vidual’s nine month gestational period. Standard errors are clustered at the county of birth level. Approved for
release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017,
CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table 6: The Effect of First-Generation Prenatal TSP Exposure on First-Generation Family
Structure Outcomes

(1) (2) (3) (4)
Married Any Children # of Children Age at First Birth

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) 0.0027 0.0037 0.0151 0.0046
(0.0021) (0.0045) (0.0115) (0.0327)

Panel B: Reduced Form

Nonattainment × Post -0.0028 -0.0038 -0.0157 -0.0049
(0.0022) (0.0047) (0.0116) (0.0339)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

Individual Controls Yes Yes Yes Yes

County-level Controls Yes Yes Yes Yes

Observations 9,060,000 4,583,000 4,785,000 4,807,000

Control Mean 0.624 0.584 1.103 26.2

First Stage F-Stat 18.93 18.78 19.04 19.17

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident, Decennial Census
Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include individual demographic controls includ-
ing sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic characteristics (employment,
total transfer income, personal income per capita) interacted with quadratic trends, county of birth weather controls
including average and maximum temperature and number of precipitation days during an individual’s nine month ges-
tational period. Standard errors are clustered at the county of birth level. Approved for release by the Census DRB,
authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017, CBDRB-FY2020-CES010-029
and CBDRB-FY2020-CES010-031.
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Table 7: The Effect of In-Utero TSP Exposure on Parental Time-Use

(1) (2) (3)
Reading Educational Time Spent
to Kids Activities with Kids

(minutes) (minutes) (minutes)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -1.459** -0.531 -13.96
(0.686) (1.06) (18.82)

Panel B: Reduced Form

Nonattainment × Post 1.488** 0.541 14.24
(0.624) (1.063) (19.58)

Fixed Effects County-of-birth, State-of-birth × Year,
Birth Month and Interview Day

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 9,000 9,000 9,000

Control Mean 2.69 3.10 316.6

First Stage F-Stat 17.03 17.03 17.03

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Decen-
nial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include
individual demographic controls including sex, race/ethnicity and quadratic in age, pre-
CAA 1970 county of birth economic characteristics (employment, total transfer income,
personal income per capita) interacted with quadratic trends, county of birth weather
controls including average and maximum temperature and number of precipitation days
during an individual’s 9 month gestational period. Standard errors are clustered at
the parent’s county of birth level. Approved for release by the Census DRB, autho-
rization numbers CBDRB-FY18-232, CBDRB-FY18-248, CBDRB-FY18-287 CBDRB-
FY19-099, CBDRB-FY2020-CES010-001 and CBDRB-FY21-CES014-004.
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A Main Results: Additional Results and Robustness

Tests

In this appendix we present a series of additional results and robustness tests supporting our
main result, documenting the effects of first-generation prenatal TSP exposure on second-
generation college attendance.

A.1 Descriptive Statistics

Table A1: Descriptive Statistics Prior to the 1970 CAAA

(1) (2) (3)
Nonattainment Attainment Difference

County County (2)-(1)

Cohort Demographics

Female 0.430 0.425 0.005**
(0.00157) (0.00229) (0.00278)

Black 0.139 0.105 0.034
(0.0129) (0.0174) (0.0216)

White 0.671 0.694 -0.023
(0.0185) (0.0271) (0.0328)

Hispanic 0.094 0.082 0.012
(0.0181) (0.0219) (0.0284)

Other 0.010 0.023 -0.013*
(0.0012) (0.0067) (0.0068)

Environmental Exposure

Gestational Exposure (10 µg/m3) 11.83 7.93 3.895***
(0.3172) (0.2464) (0.4017)

Rainfall (days) 23 25.5 -2.505
(1.22) (1.17) (1.69)

Avg. Daily Maximum Temperature 17.95 18.33 -0.3831
(0.5595) (0.5903) (0.8133)

County Socio-Economic Characteristics

County Population 1,628,000 458,000 1,170,000**
(512,000) (54,740) (514,900)

Personal Income per Capita ($ Year) 4,245 4,003 242*
(113.9) (92.51) (146.8)

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Standard errors are clus-
terd at the parent’s county of birth level. Source: Census Numident, Decennial Census Short
Form 2000 and 2010, ACS 2005 through 2015. Approved for release by the Census DRB, au-
thorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017, CBDRB-FY2020-
CES010-029 and CBDRB-FY2020-CES010-031.
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A.2 Migration

Table A2: The Effect of First-Generation Prenatal TSP Exposure on Migration out of First-
gen County of Birth

(1) (2) (3) (4)
First-Gen First-Gen Second-Gen Second-Gen
Migration Migration Migration Migration

(Out of County) (Out of State) (Out of County) (Out of State)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) 0.0078** 0.0013 -0.0082 0.0017
(0.0034) (0.0027) (0.0104) (0.0076)

Panel B: Reduced Form

Nonattainment × Post -0.0078** -0.0013 0.0068 -0.0014
(0.0033) (0.0026) (0.0084) (0.0063)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes

Observations 4,773,000 4,773,000 373,000 373,000

Control Mean 0.718 0.386 0.573 0.315

First Stage F-Stat 21.68 21.68 14.92 14.92

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident, Decennial Census Short Form
2000 and 2010, ACS 2005 through 2015 and the Census MAFARF. All regressions include individual demographic controls
including sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic characteristics (employment, total
transfer income, personal income per capita) interacted with quadratic trends, county of birth weather controls including
average and maximum temperature and number of precipitation days during an individual’s nine month gestational period.
Column 3-4 contain additional second generation demographic characteristics including race/ethnicity, sex and a quadratic
in age. Standard errors are clustered at the county of birth level. Approved for release by the Census DRB, authorization
numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-
CES010-031.
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A.3 The Effect of First-Generation Prenatal TSP Exposure on
the likelihood of Second-Generation High School Completion

In addition to exploring the effects of parental prenatal pollution exposure on the likelihood
of attending college we also explore the likelihood of dropping out of high school. Consistent
with the college attendance effects we estimate a reduction in the likelihood of completing
high school. The effect size is smaller, corresponding to a 0.5 percentage point reduction.
However, high school dropouts are rarer events than attending college and so the effect size
relative to the mean is similar (6%).

Table A3: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
High School Completion

Second-Generation High School Dropout
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) −0.0049∗ −0.0045∗ −0.0050∗ −0.0050∗

(0.0028) (0.0027) (0.0028) (0.0028)

Panel B: Reduced Form

Nonattainment × Post 0.0041∗∗ 0.0037∗ 0.0041∗∗ 0.0041∗∗

(0.0019) (0.0019) (0.0019) (0.0019)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year,
and Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 942,000 942,000 924,000 924,0000

Control Mean 0.067 0.067 0.067 0.067

First Stage F-Stat 13.8 13.8 13.78 13.77

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numi-
dent, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic in age,
pre-CAA 1970 county of birth economic characteristics (employment, total transfer income,
personal income per capita) interacted with quadratic trends, county of birth weather con-
trols including average and maximum temperature and number of precipitation days during
an individual’s nine month gestational period. Column 2-4 contain additional second gen-
eration demographic characteristics including race/ethnicity, sex and a quadratic in age.
Standard errors are clustered at the parent’s county of birth level. Approved for release by
the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-
CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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A.4 Alternate Sample Restrictions

In our main analysis we focus on a sample that is based on certain parent-child links, include
all births between 1960 and 1980, and define “treatment” to be assigned if any parent-child
link was affected. The following results show that our findings are robust to using a more
narrow window of births around the 1970 CAAA, to including probabilistic parent-child
links, and to restricting “treatment definitions” based on maternal or paternal exposure.

A.4.1 Different Treatment Windows

Here we present estimates of the effects of first-generation TSP exposure on second-generation
college attendance, restricting the sample to two alternative treatment windows: 1969-1975
and 1969-1980.

Table A4: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (1969-1975 Window)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.0253** -0.0229** -0.0251** -0.0260**
(0.0116) (0.0112) (0.0120) (0.0125)

Panel B: Reduced Form

Nonattainment × Post 0.0289*** 0.0262** 0.0279*** 0.0287***
(0.0104) (0.0105) (0.0107) (0.0109)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year,
and Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 71,000 71,000 69,500 69,500

Control Mean 0.423 0.423 0.423 0.423

First Stage F-Stat 12.85 12.83 13.24 13.00

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include
individual demographic controls including sex, race/ethnicity and quadratic in age, pre-CAA
1970 county of birth economic characteristics (employment, total transfer income, personal in-
come per capita) interacted with quadratic trends, county of birth weather controls including
average and maximum temperature and number of precipitation days during an individual’s
nine month gestational period. Column 2-4 contain additional second generation demographic
characteristics including race/ethnicity, sex and a quadratic in age. Standard errors are clus-
tered at the parent’s county of birth level. Approved for release by the Census DRB, au-
thorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017, CBDRB-
FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table A5: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (1969-1980 Window)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.0353** -0.0325** -0.0364** -0.0385**

(0.0143) (0.0138) (0.0150) (0.0156)

Panel B: Reduced Form

Nonattainment × Post 0.0278 0.0254 0.0257 0.0265
(0.0099) (0.0101) (0.0100) (0.0103)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year,
and Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 78,500 78,500 77,000 77,000

Control Mean 0.418 0.418 0.418 0.418

First Stage F-Stat 12.99 12.97 12.63 12.41

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numi-
dent, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic in age,
pre-CAA 1970 county of birth economic characteristics (employment, total transfer income,
personal income per capita) interacted with quadratic trends, county of birth weather controls
including average and maximum temperature and number of precipitation days during an
individual’s nine month gestational period. Column 2-4 contain additional second generation
demographic characteristics including race/ethnicity, sex and a quadratic in age. Standard
errors are clustered at the parent’s county of birth level. Approved for release by the Census
DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017,
CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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A.4.2 Including Probabilistic Links

Here we present results on the effects of first-generation TSP exposure on second-generation
college attendance, using an expanded sample that incorporates probabilistic parent-child
links. This increases our sample size from 234,000 to 357,000. We estimate similar effects,
although the magnitude is slightly smaller consistent with the introduction of measurement
error that arises from any false links.

Table A6: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (including Probabilistic Parent-Child Links)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.0239** -0.0216** -0.0248** -0.0259**

(0.0106) (0.0102) (0.0109) (0.0112)

Panel B: Reduced Form

Nonattainment × Post 0.0197*** 0.0178*** 0.0203*** 0.0210***
(0.0066) (0.0066) (0.0067) (0.0066)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year,
and Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 364,000 364,000 357,000 357,000

Control Mean 0.506 0.506 0.506 0.506

First Stage F-Stat 14.51 14.49 14.27 14.04

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include
individual demographic controls including sex, race/ethnicity and quadratic in age, pre-CAA
1970 county of birth economic characteristics (employment, total transfer income, personal in-
come per capita) interacted with quadratic trends, county of birth weather controls including
average and maximum temperature and number of precipitation days during an individual’s
nine month gestational period. Column 2-4 contain additional second generation demographic
characteristics including race/ethnicity, sex and a quadratic in age. Standard errors are clus-
tered at the parent’s county of birth level. Approved for release by the Census DRB, authoriza-
tion numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017, CBDRB-FY2020-
CES010-029 and CBDRB-FY2020-CES010-031.
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A.4.3 Maternal vs. Paternal Exposure

In this section we explore the effects of first-generation TSP exposure on second-generation
college attendance restricting the treatment group to: cases in which mother’s were affected;
cases in which father’s were affected; cases in which both the mother and father were affected.
We estimate slightly larger effects when both the mother and father were affected.

Table A7: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (Mother Exposed)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) −0.0440*** −0.0395** −0.0419** −0.0423**

(0.0170) (0.0161) (0.0172) (0.0175)

Panel B: Reduced Form

Nonattainment × Post 0.0344*** 0.0309*** 0.0320*** 0.0320***
(0.0084) (0.0086) (0.0087) (0.0086)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year,
and Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 227,000 227000 223,000 223,000

Control Mean 0.5 0.5 0.5 0.5

First Stage F-Stat 12.5 12.48 12.09 11.85

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. The sample is restricted
to compare the outcomes of children who’s mother’s, were affected (but not father’s) to children
where neither mother or father were affected. All regressions include individual demographic
controls including sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic
characteristics (employment, total transfer income, personal income per capita) interacted with
quadratic trends, county of birth weather controls including average and maximum temperature
and number of precipitation days during an individual’s nine month gestational period. Column 2-4
contain additional second generation demographic characteristics including race/ethnicity, sex and
a quadratic in age. Standard errors are clustered at the parent’s county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table A8: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (Father Exposed)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.0410** -0.0376** -0.0424** -0.0448**

(0.0181) (0.0176) (0.0194) (0.0202)

Panel B: Reduced Form

Nonattainment × Post 0.0303*** 0.0278*** 0.0306*** 0.0321***
(0.0092) (0.0093) (0.0096) (0.0097)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 219,000 219,000 215,000 215,000

Control Mean 0.499 0.499 0.499 0.499

First Stage F-Stat 11.18 11.15 10.67 10.51

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. The sample is restricted
to compare the outcomes of children who’s father’s, were affected (but not mother’s) to children
where neither mother or father were affected. All regressions include individual demographic
controls including sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic
characteristics (employment, total transfer income, personal income per capita) interacted with
quadratic trends, county of birth weather controls including average and maximum temperature
and number of precipitation days during an individual’s nine month gestational period. Column 2-4
contain additional second generation demographic characteristics including race/ethnicity, sex and
a quadratic in age. Standard errors are clustered at the parent’s county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table A9: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (Both Mother and Father Exposed)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.0665** -0.0558** -0.0568** -0.0574**

(0.0268) (0.0243) (0.0257) (0.0262)

Panel B: Reduced Form

Nonattainment × Post 0.0467*** 0.0391*** 0.0386*** 0.0386***
(0.0108) (0.0110) (0.0113) (0.0113)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes

Second-Gen Controls No Yes Yes Yes

Second-Gen County FE? No No Yes Yes

Second-Gen SY FE? No No No Yes

Observations 208,000 208,000 204,000 204,000

Control Mean 0.502 0.502 0.502 0.502

First Stage F-Stat 9.86 9.82 9.25 9.06

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numi-
dent, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. The sample is
restricted to compare the outcomes of children where both parents were affected to children where
neither parent was affected. All regressions include individual demographic controls including
sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic characteris-
tics (employment, total transfer income, personal income per capita) interacted with quadratic
trends, county of birth weather controls including average and maximum temperature and num-
ber of precipitation days during an individual’s nine month gestational period. Column 2-4 con-
tain additional second generation demographic characteristics including race/ethnicity, sex and a
quadratic in age. Standard errors are clustered at the parent’s county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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A.5 Regression Discontinuity Design Approach

As there is a sharp cutoff in assignment to nonattainment status, we also test the robustness
of our findings to using a regression discontinuity design.

The county-level ambient air quality standards set for particulate matter had two parts:
annual average (geometric mean) TSP concentrations must be less than 75 µg/m3, and the
second highest daily average observation must be no less than 260 µg/m3. In practice, the
first part was binding for almost all counties—in our data, about 20 counties would have
been in nonattainment due to the second part of the standard but not the first. We exclude
these counties from the subsequent analysis and focus on the remaining counties.

Following Chay and Greenstone (2005) and Isen et al. (2017), we estimate parametric
RDD regressions, including a linear spline for pre-1970 CAAA average TSP concentrations.
We define Distc,t as TSPc − 75 (where TSPc is the geometric mean TSP in 1970 in county
c) for years after 1971, and set Distc = 0 for 1971 and earlier. We then estimate regressions
of the form:

Outcomei,j,c,t = α0 + α1(Nonattainmentc,1970 × 1[τ > 1971])

+α2Distc,1970 + α3Distc,1970 × 1[TSPc > 75] + γX ′j + δX ′ct+ εi,j,c,t

We estimate these RD regressions with bandwidths varying from 25µg/m3 to 150 µg/m3.
Our main specification uses the largest analysis window (1960-1980), certain parent-child
links, and does not include second-generation controls. We estimate similar effects to our
difference-in-differences specification. Results are robust to including probabilistic parent-
child links, to narrowing the analysis window (1969-1980 or 1969-1974), and to including
second-generation controls.
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Table A10: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance (RDD)

Second-Generation College Attendance
(1) (2) (3) (4)

Panel A: Baseline specification

Nonattainment 0.030* 0.014 0.018* 0.023**
(0.017) (0.011) (0.010) (0.010)

Observations 99,500 197,000 291,000 301,000

Panel B: Second-Gen Controls

Nonattainment 0.037** 0.020* 0.024** 0.030***
(0.016) (0.011) (0.010) (0.010)

Observations 91,000 180,000 266,000 275,000

Panel C: Probabilistic Links

Nonattainment 0.027∗∗ 0.016∗ 0.026∗∗∗ 0.030∗∗∗

(0.012) (0.009) (0.008) (0.008)

Observations 139,000 275,000 406,000 420,000

Panel D: 1969-1980 Window

Nonattainment 0.052∗∗ 0.024 0.027∗∗ 0.030∗∗

(0.024) (0.016) (0.013) (0.013)

Observations 24,500 48,500 71,500 73,500

Bandwidth 25 50 100 150

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census
Numident, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All
regressions include individual demographic controls including sex, race/ethnicity and
quadratic in age, pre-CAA 1970 county of birth economic characteristics (employ-
ment, total transfer income, personal income per capita) interacted with quadratic
trends, county of birth weather controls including average and maximum tempera-
ture and number of precipitation days during an individual’s nine month gestational
period. Column 2-4 contain additional second generation demographic character-
istics including race/ethnicity, sex and a quadratic in age. Standard errors are
clustered at the parent’s county of birth level. Approved for release by the Cen-
sus DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-
CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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B Exploring Mechanisms: Additional Results and Ro-

bustness Tests

B.1 Step-Children vs. Biological Children

Table B1: The Effect of First-Generation Prenatal TSP Exposure on Second-Generation
College Attendance: Step-Children vs. Biological Children

Has Step-Child Second-Generation College Attendance

(1) (2) (3) (4) (5)

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) 0.0096** -0.0346** -0.0326** -0.0359** -0.0379**
(0.0048) (0.0160) (0.0156) (0.0168) (0.0174)

First-Gen Prenatal TSP -0.0054 -0.0043 -0.0056 -0.0058
× Second-Gen Step-Child (0.0097) (0.0095) (0.0097) (0.0097)

Panel B: Reduced Form

Nonattainment × Post -0.0091** 0.0256*** 0.0241*** 0.0259*** 0.0271***
(0.0042) (0.0086) (0.0087) (0.0087) (0.0087)

Nonattainment × Post 0.0170 0.0147 0.0180 0.0190
× Second-Gen Step-Child (0.0164) (0.0161) (0.0163) (0.0163)

First-Gen Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes Yes

Second-Gen Controls No No Yes Yes Yes

Second-Gen County FE? No No No Yes Yes

Second-Gen SY FE? No No No No Yes

Observations 2,493,000 238,000 238,000 234,000 234,000

Control Mean 0.29 0.5178 0.5178 0.5178 0.5178

First Stage F-Stat 21.3 10.31 10.33 10.54 10.62

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident, Decennial Cen-
sus Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include individual demographic controls
including sex, race/ethnicity and quadratic in age, pre-CAA 1970 county of birth economic characteristics (employ-
ment, total transfer income, personal income per capita) interacted with quadratic trends, county of birth weather
controls including average and maximum temperature and number of precipitation days during an individual’s
nine month gestational period. Column 2-4 contain additional second generation demographic characteristics in-
cluding race/ethnicity, sex and a quadratic in age. Standard errors are clustered at the parent’s county of birth
level. Approved for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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B.2 Fertility Results by Sex

Table B2: The Effect of First-Generation Prenatal TSP Exposure on First-Generation Family
Structure Outcomes (Women)

(1) (2) (3)
Married # of Children Age at First Birth

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.00035 0.0075 0.0013
(0.0026) (0.013) (0.045)

Panel B: Reduced Form

Nonattainment × Post 0.00036 -0.0076 -0.0014
(0.0027) (0.013) (0.046)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 4,624,000 2,445,000 2,710,000

Control Mean 0.63 1.14 25.4

First Stage F-Stat 18.75 18.9 18.79

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numi-
dent, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic in age, pre-
CAA 1970 county of birth economic characteristics (employment, total transfer income, personal
income per capita) interacted with quadratic trends, county of birth weather controls including
average and maximum temperature and number of precipitation days during an individual’s nine
month gestational period. Standard errors are clustered at the county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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Table B3: The Effect of First-Generation Prenatal TSP Exposure on First-Generation Family
Structure Outcomes (Men)

(1) (2) (3)
Married # of Children Teen Pregnancy

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) 0.006* 0.025* 0.015
(0.0032) (0.013) (0.042)

Panel B: Reduced Form

Nonattainment × Post -0.0063** -0.027** -0.016
(0.0029) (0.013) (0.044)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 4,437,000 2,330,000 2,096,000

Control Mean 0.62 1.06 27.25

First Stage F-Stat 19.06 18.98 19.46

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numi-
dent, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic in age, pre-
CAA 1970 county of birth economic characteristics (employment, total transfer income, personal
income per capita) interacted with quadratic trends, county of birth weather controls including
average and maximum temperature and number of precipitation days during an individual’s nine
month gestational period. Standard errors are clustered at the county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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B.3 First-Generation Educational Outcomes

Table B4: The Effect of First-Generation Prenatal TSP Exposure on First-Generation Ed-
ucational Outcomes

(1) (2) (3)
Years of High School Attended
Schooling Dropout College

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.0103 -0.0008 -0.0003
(0.0170) (0.0012) (0.0029)

Panel B: Reduced Form

Nonattainment × Post 0.0108 0.0008 0.0003
(0.0175) (0.0012) (0.0031)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 6,485,000 6,485,000 6,485,000

Control Mean 14.84 0.05477 0.6932

First Stage F-Stat 18.81 18.81 18.81

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numi-
dent, Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions
include individual demographic controls including sex, race/ethnicity and quadratic in age, pre-
CAA 1970 county of birth economic characteristics (employment, total transfer income, personal
income per capita) interacted with quadratic trends, county of birth weather controls including
average and maximum temperature and number of precipitation days during an individual’s nine
month gestational period. Standard errors are clustered at the county of birth level. Approved
for release by the Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-
FY2020-CES010-017, CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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B.4 Assortative Matching

Table B5: The Effect of First-Generation on Partner Characteristics

(1) (2) (3) (4)
Partner Both Both College Same Income
Treated Employed Educated Quintile

Panel A: IV

First-Gen Prenatal TSP (10µg/m3) -0.64*** -0.0034 -0.0022 -0.0070*
(0.15) (0.0026) (0.0028) (0.0042)

Panel B: Reduced Form

Nonattainment × Post 0.66*** 0.0034 0.0022 0.0070*
(0.0044) (0.0025) (0.0027) (0.0041)

Fixed Effects County-of-birth, State-of-birth × Year, Birth Month

First-Gen Controls Yes Yes Yes Yes

Observations 2,244,000 2,241,000 2,243,000 1,665,000

Control Mean 0.203 0.690 0.289 0.681

First Stage F-Stat 18.4 20.91 20.94 21.47

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Census Numident,
Decennial Census Short Form 2000 and 2010, ACS 2005 through 2015. All regressions include in-
dividual demographic controls including sex, race/ethnicity and quadratic in age, pre-CAA 1970
county of birth economic characteristics (employment, total transfer income, personal income per
capita) interacted with quadratic trends, county of birth weather controls including average and
maximum temperature and number of precipitation days during an individual’s nine month gesta-
tional period. Standard errors are clustered at the county of birth level. Approved for release by the
Census DRB, authorization numbers CBDRB-FY2020-CES010-015, CBDRB-FY2020-CES010-017,
CBDRB-FY2020-CES010-029 and CBDRB-FY2020-CES010-031.
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C Data Appendix

C.1 The Census Bureau’s Data Linkage Infrastructure

Note: this section describes the overall Census data linkage infrastructure. The
procedures described here have already been performed on the analysis data we
work with. This appendix describes the use of Census, survey and administrative
data to identify parent-child links.

The U.S. Census Bureau is authorized, under Titles 13 and 26 of the US Code, to utilize
all available data resources, including administrative records and commercially provided
data, to improve the measurement of the US population and economy. Under this authority,
the Census Bureau has developed a data linkage infrastructure which allows researchers
to integrate data from multiple sources, including administrative records from federal and
state government agencies, Decennial Census data, and demographic surveys. The central
component of the Data linkage infrastructure is the Person Identification Validation System
(PVS), which is described in further detail in Wagner and Layne (2014).

PVS is designed as a flexible probabilistic matching system that can be deployed in
production to analyze very large datasets in a computationally efficient manner. PVS has
two components: a person-based matching algorithm and an address-based matching algo-
rithm. The address based matching algorithm takes a string address as an input (e.g. ”1600
Pennsylvania Ave NW, Washington, DC 20001”), splits the string into components (street
number, street name, street suffix, city, state, zipcode), standardizes these components, and
then matches the address to a reference file (the Census Master Address File), optimizing
on a fuzzy string comparator (the Levanstein string distance). The person based match-
ing algorithm has a similar structure: it takes as input the available personally identifiable
information on a file (name, SSN, date of birth, sex, address), and, after standardization,
matches these PII fields to a separate reference file (the Census Numident).

Each of these matching algorithms produces a unique anonymized identifier for each
successful match. For the address matching algorithm, the resulting identifier is called a
MAFID (Master Address File Identifier), while the person-based matching algorithm uses
PIKs (protected identification keys). MAFIDs and PIKs are both static hashes referencing
a single entity in the relevant reference file, and can thus be used to link datasets without
including any personally identifiable information on the research files used by researchers.
Any attempt to infer PII from a research file with PIKs or MAFIDs is thus a violation of
Title 13, with potential punishments including 10 years in prison, and hundreds of thousands
of dollars in fines.

Not all of the PII inputs used by the PVS system are found in every microdata file
on which PVS is applied. In particular, Social Security numbers are rarely elicited on
demographic surveys, and have never been asked for in decennial Censuses.16 Administrative
records which contain SSNs (e.g. most tax records) can be assigned a PIK in 99+ percent
of cases. Match rates are still high for many demographic surveys and the decennial census,

16The Current Population Survey ASEC asked for SSNs until 2002; however, non-response increased
dramatically through the 1990s. This was in fact one of the motivating factors in the development of PVS.
Moving from SSN-based matching to PVS-based probabilistic matching actually increased match rates for
the CPS after 2002.
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which ask for name and exact date of birth. The PIK assignment rate for the 2010 Census is
about 91 percent, while the PIK assignment rate for the 2013 American Community Survey
is about 94 percent.

C.2 Parent-Child Links

To study the intergenerational effects of the Clean Air Act, it is necessary to locate parents
at birth (around the enactment of CAA 1970), link these parents to their children, and
measure outcomes for both parents and children. We begin by assembling a database of
all parent-child links that can be evaluated using the various data sources available in the
Census Data Linkage Infrastructure. The set of links we are able to identify is not, we should
stress, the full population of links. In our empirical analysis, we will attempt to re-weight
the data to address the fact that the missing links we are not able to identify are almost
certainly not missing at random.

To benchmark our link coverage, consider that the completed cohort fertility rate for
women born in 1970 is about 2.1. There were about 44 million women aged 30-50 in the
2010 Census (i.e. born between 1960-1980). Taking the 1970 CCFR as constant throughout
this group, we can expect at most 92 million natural born children. In practice we will
identify fewer than this, due to linkage error, and the fact that women born in the latter
part of our birth year range will not have completed fertility in the latest available data we
are using to identify parent-child links (the 2015 ACS).

C.2.1 Decennial Census Data

The 2000 and 2010 decennial Census 100 percent detail file (HDF), colloquially the “Census
short form”, collects an abbreviated set of demographic information from the full popula-
tion of the United States in decadal Census years. This demographic information includes
date of birth, sex, race and ethnicity, and some relationship information. Unfortunately,
the relationship information collected in the Census does not capture the full relationship
structure within a household. Rather, the Census collects information from each individual
in a household on their relationship to the primary household member (the first person listed
on the census form for the household), coded as the variable QREL.

This means it is possible to identify two types of parent child links:“certain” parent-child
links between a child and the householder parent, and “probable” parent-child links between
a child and the married or unmarried partner of their parent householder. The relationship
codes are sufficiently detailed to separate natural born children of a householder (QREL code
3), adopted children (QREL code 4) and stepchildren (QREL code 5). For the purposes of
the project at hand, we identify only parent-child links (certain or probable) for parents born
between 1960-1982.

To identify these two types of links in the 2000 Census HDF, we use the following al-
gorithm. We first subset the HDF by age and relationship code, retaining only individuals
aged 40 or younger (i.e. who were born after 1960) who have QREL codes 1 (householder),
2 (spouse of householder), 3 (natural born child of householder), 4 (adopted child of house-
holder, 5 (stepchild of householder) or 19 (unmarried partner of householder). Then, for
each household, we assign three link variables: ”Certain Parent”, which is the PIK of
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the householder, ”Probable-Married”, which is the PIK of the householder’s spouse, and
”Probable-Unmarried”, which is the PIK of the householder’s unmarried partner. Each of
these variables are missing if the relevant PIK is missing (due to PIK non-assignment when
the HDF was analyzed via PVS). We then reshape the data into long form (so each row
contains the child’s PIK, the parent’s PIK and indicators for the type of child and the type
of parent). We discard all cases where the child or parent’s PIKs are missing.

This yields a dataset containing about 65 million parent-child links. Of these, about 35
million are ”Certain” Links”, about 28 million are ”Probable-Married”, and the remaining
approximately 2 million are ”Probable-Unmarried”. We identify more mother-child links (≈
38 million) than father-child links (27 million). As expected, the parent-child links identified
in the 2000 HDF are heavily tilted toward the older parents: about 51 million links involve
parents born before 1970, while about 14 million involve parents born after 1980.

We repeat the use of the same algorithm to identify parent-child links in the 2010 HDF.
We identify substantially more links in the 2010 Census, as expected. In all, we identify 115
million parent-child links—of these, about 64 million are ”Certain”, 46 million are ”Probable-
Married” and the remaining 5 million are ”Probable-Unmarried”. As with the 2000 HDF,
we identify more mother-child links (65 million) compared to father-child links (50 million).
We continue to identify more parent-child links for parents born before 1970, although the
split is much more even compared to the 2000 HDF (reflecting the fact that women born
before 1970 had largely completed fertility, while women born after 1970 were still in prime
childbearing age ranges).

Combining the information from the two decennial Census files, we can identify about
152 million unique parent-child links for about 81 million children. Note that because of the
way that the ”Probable” links are identified, it is possible that some of these links repre-
sent changes in family structure (marriages, divorces, and creation/dissolution of unmarried
partnerships). About 123 million links occur for children with 1 or 2 unique links, while the
remaining 29 million occur for children with 3 or more links (these represent cases where
parental relationships appear to have changed).

C.2.2 Other Demographic Surveys

The final source of data on parent-child links comes from demographic surveys. These
surveys are substantially smaller than the Census, but allow us to identify relationships in
non-Decennial year. We use the American Community Survey, which has been conducted
monthly since 2001, as our main survey source. The Current Population Survey Annual
Social and Economic Supplement (CPS ASEC), which is conducted every March is another
potential source of parent-child links. However, the CPS ASEC sample size is substantially
smaller than the ACS (200,000 individuals in the CPS-ASEC versus about 5 million in the
ACS 1 year files), and thus provides minimal additional information relative to the decennial
Census and ACS.

The ACS was conducted as an experimental survey from 2001-2004, with increasing
sample size in each year. From 2005–2015, the ACS has consisted of a sample size of about
5 million individuals. The content of the ACS has evolved considerably over this period.
In particular, the household relationship question was redesigned for the 2008 ACS. From
2001–2007, the ACS relationship question allowed for 10 categories, with a single ”child
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of householder” category that includes adopted children, natural born children and step-
children. From 2008–2015, the relationship question was expanded to 13 categories, with
separate categories for adopted children, natural born children and step-children. As with the
Decennial HDF data, the relationship variable in the ACS contains categories for married
and unmarried partners of the householder, so we categorize the ACS links as ”Certain”
(for the householder), ”Probable-Married” (for the householder’s spouse) and ”Probable-
Unmarried” (for the householder’s unmarried partner). We are able to collect about 22
million parent-child links for about 12 million children.

C.2.3 Combining Relationship Information

The relationship information we have extracted from Decennial Census data and demo-
graphic surveys has a substantial degree of overlap. In total, we identify links for over 168
million children.

Note while a vast majority (about 87 percent) of children can be linked to one or two
parents, there are a substantial number who are linked to three or more parents.

We initially retain links from each source, to allow for robustness checks on the type of
link used (i.e. just using Census links or keeping only ”certain” parent-child links). Some
source information is included in the data, including the parent and child types from the
Census and survey data and the year(s) a link appears in the ACS data. Our main estimating
sample uses only the certain links found in the Census and ACS data. In robustness exercises,
we additionally include probabilistic links.

C.3 Pollution Exposure at Birth

To analyze the intergenerational effects of pollution exposure, we need to be able to infer
the level of ambient air pollution and the changes in EPA policy (designation nonattainment
of NAAQS) that parents were exposed to at birth. We do this in three steps. First, we
link the set of unique parents identified in the previous section to the Census Numident
to obtain date and place of birth. We then obtain monitor-level daily pollution measures
from the EPA, which aggregate to the county level, and link these county-level measures to
the parents’ place of birth. Finally, since the EPA’s records of nonattainment designations
appears to be incomplete or destroyed, we simulate these nonattainment designations for
counties with EPA monitors active in 1969 (before CAA 1970).

C.3.1 Census Numident Data

Our source of information on the parents’ place of birth comes from the Census Numident,
which is a derivative product of the SSA Numerical Identification File, and serves as the
reference file for the PVS matching algorithm. The Census Numident contains three fields
which can be used to infer place of birth, which are transcribed from form SS-5 (application
for social security number). The field pobfin contains a two digit code for the country of birth
for non-native born individuals, and the field pobst contains a two character abbreviation for
state of birth for all native born US citizens. Both of these fields can be assigned one-to-one
with standard geographies (i.e. FIPS codes). The field pobcity, however, is slightly more
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cumbersome. This variable represents the first 12 characters of the place (or county) of birth
entered on form SS-5. There is little standardization or cleaning done by SSA or Census for
this field, and thus there are numerous misspellings and inconsistencies.

In order to match the information in the pobcity with standardized geographies (i.e.
county FIPS codes), we take a two-step approach. First, after excluding foreign-born indi-
viduals (about 13 million parents), we capitalize on a crosswalk developed jointly by Census
researchers and external researchers including Martha Bailey and Reed Walker (described in
detail in (Isen et al., 2017)). This crosswalk provides all exact matches (after standardiza-
tion) and probabilistic matches between pobcity entries and unique GNIS place names. A
second crosswalk between GNIS places and county FIPS codes allows us to directly match
parents to counties exactly. For the remaining cases, we execute a probabilistic matching al-
gorithm. This algorithm assigns a match by calculating the optimal string alignment (OSA)
distance between a pobcity entry and a reference list of all county and Census place names,
selecting the smallest distance (maximum of 5) within pobst. This is essentially the same
algorithm as in Voorheis (2017). All told, about 74 percent of native-born parents can be
assigned a place of birth using the GNIS crosswalks, and another 23 percent can be matched
using our probabilistic matching algorithm, so that about 97 percent of native born parents
can be assigned a county of birth.

C.3.2 EPA Monitor Data

With information about the place of parents’ birth in hand, we infer the level of pollution
exposure experienced by these individuals if we have some information based on the average
exposure within their county of birth. To gather this pollution exposure information, we rely
on monitor data from the EPA. The EPA has made monitor-level air quality data available
via the AQDM API. Our pollutant of interest is particulate matter. For the relevant period
of time (around 1970), the primary regulated pollutant was total suspended particles (TSP),
defined as the density of particulates less than 50 microns, measured in units µg/m3.17 We
thus retrieve all TSP (EPA pollutant code 11101) monitor observations between 1960–1980.

The TSP standard was set based on a 24-hour sampling, and hence the monitor-level data
is provided on a daily basis. Our baseline approach to aggregating these daily monitor-level
observations is as follows. For each county-day, we calculate the average TSP concentration
across all active monitors in that day, which we take as the average exposure to TSP in that
county on that day. We then calculate county-level moving average exposure to TSP for
each unique birthday between 1960 and 1980 for two periods of interest: the nine months
before birth (in utero exposure) and the year after birth (infant exposure).

The EPA’s monitoring network expanded dramatically following the passage of CAA
1970, expanding both the number of counties monitored and the density of monitors within
consistently monitored counties. This poses two potential challenges to our baseline mea-
surement approach above. First, some counties will only have observations in the “post-
treatment” period in our OLS and IV regressions. Second, even for counties which are
consistently monitored, the expansion of the monitor network may result in systematic
measurement error—average county exposure will be more precisely measured with more

17This definition was later revised to 10 microns (PM10) and 2.5 microns (PM2.5) standards in 1987 and
1997 respectively.

21



monitors and so the pre-treatment observations are more likely to be mismeasured than the
post-treatment observations. To address these issues, we also produce county-level moving
averages using a constant set of monitors (the monitors that were active in 1969 or earlier).

C.3.3 Nonattainment Designations

Our empirical strategy relies on identifying the intergenerational effects of pollution exposure
at birth using plausibly exogenous variation in TSP exposure that resulted from counties
being designated as in nonattainment of the ambient air quality standards in the CAA
1970 by the EPA. Although the EPA makes nonattainment designations publicly available
starting in 1991, and researchers have reconstructed nonattainment designations back to
1980, there appear to be no existing records on which counties were initially designated as
being in nonattainment in 1972, the first year in which the CAA 1970 was in effect. This is
because the EPA designated entire air quality regions as in nonattainment, not individual
counties, when setting standards authorized under CAAA 1970. In practice, however, the
way that these nonattainment designations were applied bound at the county level: the EPA
considered an air quality district to be in nonattainment if any of the monitors in the region
were in nonattainment. Thus in practice counties with monitors in attainment were not
subject to the same regulations as counties that were in nonattainment. Since the TSP air
quality standards are known, and as noted in the previous section, we have monitor-level
data on the actual level of exposure in the years before the CAA 1970 was in effect, it is
possible to reconstruct which counties would have been in Nonattainment.

Nonattainment of the primary air quality standard for TSP set in CAA 1970 occurs if
either a) the annual average (geometric mean) TSP concentration is above 75 µg/m3, or b)
the second highest daily TSP concentration is above 260 µg/m3. We use the monitor-level
observations from the previous section to calculate the geometric mean and second highest
daily TSP concentration for all counties with at least on monitor in 1970. This allows us
to categorize 258 counties as “nonattainment” counties, and 319 counties as “attainment”
counties.

C.3.4 Other County Attributes

Estimating the effects of pollution exposure at birth on adult outcomes for parents and
intergenerational effects for their children may be confounded by other characteristics of
the parents’ place of birth, such as weather or economic activity. To this end, we obtain
pre-determined (i.e. before the clean air act of 1970) information on county level economic
activity from the BEA, and county-level weather information from the National Oceanic and
Atmospheric Administration (NOAA).

Following Isen, et al. (2017), we obtain information on the economy and population of
U.S. counties in 1969 from the Bureau of Economic Analysis’ Regional Economic Accounts
(1969 is the earliest year for which the BEA publishes regional accounts data). We extract
four variables of interest from the regional accounts: total population, total employment, to-
tal personal income and total personal transfer income. From these we can construct income
per capita and employment-to-population ratio measures; these measures allow us to control
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for important county-level economic characteristics that may confound the nonattainment-
pollution relationship.

Additionally, we obtain information on county-level weather patterns. Temperature and
precipitation, in particular, play important factors in the formation of particulate matter
emissions and in the suspension of particulate matter in the atmosphere after emission. Im-
portantly, there is evidence both that very low temperatures can increase PM concentrations
by emissions (at cold temperatures, internal combustion engines burn fuel less efficiently),
while very high temperatures can increase PM concentrations through suspension and at-
mospheric particle formation (sulfate and nitrate particles form more readily at hot temper-
atures. Additionally, precipitation decreases PM concentrations by decreasing suspension.
Thus we obtain weather-station level data on daily high temperature, low temperature and
precipitation from NOAA’s Global Historical Climatology Network (GHCN). For each day
between 1959 and 1981, we interpolate across the weather station network to each county
centroid using inverse distance weighting to obtain a county-day level dataset. We can then
calculate the average high/low temperature and number of precipitation days corresponding
to the 9 months before birth and the year after birth for each individual.

C.4 ATUS Data

To investigate mechanisms underlying the second generation effect, we will leverage a sec-
ondary linked dataset which will allow us to measure both time use for individuals at a point
in time, as well as their place of birth and the level of pollution they were exposed to. We
do this by linking a subset of respondents to the American Time Use Survey (ATUS) to the
Census Numident.

Using the IPUMS public use ATUS data from 2003-2017, we build a series of time use vari-
ables which divide the total time spent during the reference day on specific child-enrichment
activities (time spent on children’s education activities, time spent on children’s health ac-
tivities, time spent reading to a child), as well as broad categories of non-sleep time use
(time spent on work, time spent on social activities, time spent on leisure, time spent on
education). We then link a subset of the ATUS respondents to the Census Numident to
attach place of birth characteristics as follows.

Our linkage strategy relies on the fact that the ATUS sample frame is drawn from the
Current Population Survey. Hence it is possible to link ATUS respondents to the CPS on
an individual level in the public use data. For the subset of individuals who are in sample
and respond to the ASEC, we can link this public use identifier to the internal confidential
CPS-ASEC data. The internal CPS-ASEC has had PIKs assigned, so we are then able to
link these subset of individuals to the Census Numident by PIK, identifying place of birth
and TSP exposure at birth using the same method used for the ACS sample, described
above. We further subset this linked sample to individuals born 1960-1980, coinciding with
the first generation for the main ACS results. Note that this is a relatively small subsample
of ATUS respondents (the final analysis sample has about 10,000 observations).
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